期刊文献+

基于几何信息先验分布的似物性推荐方法 被引量:1

Objectness Proposal Based on Prior Distribution of Geometric Characteristics of Object Regions
下载PDF
导出
摘要 似物性推荐是计算机视觉研究中的热门问题,其目的是用尽可能少的推荐窗口涵盖可能的兴趣目标,以显著地提升目标检测任务的计算效率。从组合几何学角度对该问题进行了分析,一种"完全窗口覆盖"的方法被提出,用少量窗口即可覆盖所有可能目标区域。对于尺寸不大于512×512的图像,约19000个窗口即可覆盖所有尺寸不小于16×16的目标区域。基于目标矩形的位置、尺寸的先验分布,可以使用贪心策略进一步地缩减窗口数量。为了适应不同图像集在小概率样本上的差异,提出了一种融合了贪心和随机方法的混合机制,其所需的计算量非常小,而且具有很好的泛化能力。在VOC2007测试集上,该混合机制可以在1000个推荐窗口上取得94.52%的召回率,其中在前10个热点推荐窗口上的召回率比其他方法平均高出13.99%~40.29%。 Objectness proposal is an emerging problem aiming to improve the efficiency of object detection by reducing candidate windows. The problem was analyzed from the perspective of combinatorial geometric , and a method was pro- posed to construct full cover sets which cover all possible object rectangles with a rather small amount of windows. For images no larger than 512 × 512, supposing all object rectangles are not smaller than 16 × 16, nearly 19000 windows are sufficient to make up a full cover set. By exploiting the prior distribution of locations/sizes of object rectangles, this amount can be reduced further in a greedy mode. In order to address the diversity of low-probability samples of different image sets, a hybrid scheme mixing the greedy and random methods which has good generality was presented. The new scheme recalls 94. 52% object rectangles with 1000 proposal windows, and its DRs on the first ten hot proposal win- dows are 13. 99%~40. 29% higher than existing methods in average.
出处 《计算机科学》 CSCD 北大核心 2015年第9期303-308,共6页 Computer Science
关键词 目标检测 似物性推荐 几何信息 完全覆盖集合 混合机制 Object detection, Objectness proposal, Geometric characteristics, Full cover set, Hybrid scheme
  • 相关文献

参考文献18

  • 1Dalal N,Triggs B.Histograms of oriented gradients for human detection[C]∥IEEE Conference on Computer Vision and Pattern Recognition,2005 .San Diego,United States:IEEE,2005:886-893.
  • 2Felzenszwalb P F,Girshick R B,McAllester D,et al.Object detection with discriminatively trained part-based models [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(9):1627-1645.
  • 3Lampert C H,Blaschko M B,Hofmann T.Beyond sliding windows:Object localization by efficient subwindow search[C]∥2008 IEEE Conference on Computer Vision and Pattern Recognition.Anchorage,United States:IEEE,2008:1-8.
  • 4杨扬,李善平.分割位置提示的可变形部件模型快速目标检测[J].自动化学报,2012,38(4):540-548. 被引量:11
  • 5Alexe B,Deselaers T,Ferrari V.What is an object?[C]∥IEEE Conference on Computer Vision and Pattern Recognition,2010.San Francisco,United States:IEEE,2010:73-80.
  • 6Alexe B,Deselaers T,Ferrari V.Measuring the objectness ofimage windows [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(11):2189-2202.
  • 7时健 郭延文 杜振龙等.一种基于网格参数化的图像适应方法.软件学报,2008,19(1):19-30.
  • 8Endres I,Hoiem D.Category independent object proposals[C]∥European Conference on Computer Vision,2010 .Crete,Greece:Springer Berlin Heidelberg,2010:575-588.
  • 9Endres I,Hoiem D.Category-independent object proposals with diverse ranking [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,36(2):222-234.
  • 10Uijlings J R R,van de Sande K E A,Gevers T,et al.Selective search for object recognition [J].International Journal of Computer Vision,2013,104(2):154-171.

二级参考文献18

  • 1Felzenszwalb P,Girshick R,McAllester D,Ramanan D. Object detection with discriminatively trained part-based models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,(09):1627-1645.
  • 2Dalal N,Triggs B. Histograms of oriented gradients for human detection[A].San Diego,USA:IEEE,2005.886-893.
  • 3Felzenszwalb P,Girshick R,McAllester D. Cascade object detection with deformable part models[A].San Francisco,USA:IEEE,2010.2241-2248.
  • 4Desai C,Ramanan D,Fowlkes C. Discriminative models for multi-class object layout[A].Kyoto,Japan:IEEE,2009.229-236.
  • 5Blaschko M,Lampert C. Learning to localize objects with structured output regression[A].Marseille,France:Springer,2008.2-15.
  • 6Lampert C,Blaschko M,Hofmann T. Beyond sliding windows:object localization by efficient subwindow search[A].Anchorage,USA:IEEE,2010.1-8.
  • 7Awasthi P,Gagrani A,Ravindran B. Image modeling using tree structured conditional random fields[A].Hyderabad,India:Morgan Kaufmann Publishers,2007.2060-2065.
  • 8Reynolds J,Murphy K. Figure-ground segmentation using a hierarchical conditional random field[A].Montreal,Canada:IEEE,2007.175-182.
  • 9Plath N,Toussaint M,Nakajima S. Multi-class image segmentation using conditional random fields and global classification[A].Montreal,Canada:ACM,2009.817-824.
  • 10Russell B,Freeman W,Efros A,Sivic J,Zisserman A. Using multiple segmentations to discover objects and their extent in image collections[A].New York:USA:IEEE,2006.1605-1614.

共引文献13

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部