期刊文献+

两类三次旋转对称布尔函数的汉明重量和非线性度

The Hamming Weight and Nonlinearity of Two Classes of Cubic Rotation-symmetric Boolean Functions
原文传递
导出
摘要 旋转对称布尔函数是一类具有良好密码学性质的布尔函数,自被提出来就得到了学者们的广泛关注.本文研究了形如f(x)=∑i=0^n-1 xix1+ixm+1+i和ft(x)=∑i=0^n-1 xixt+ixm+i的两类三次旋转对称布尔函数的汉明重量及非线性度.通过对F2^n进行分解,可将函数转化为特殊形式,使得求取函数的傅里叶变换变得相对容易.再利用汉明重量及非线性度与傅里叶变换之间的关系,求出了这两类函数的汉明重量和非线性度的计算公式. Rotation-symmetric Boolean functions are a class of Boolean functions with good cryptographic properties, which have been extensively studied since they were proposed. In this paper, we study the Hamming weight and nonlinearity of two classes of Rotation-symmetric functions, which are of the forms: f(x)=∑i=0^n-1 xix1+ixm+1+i and f(x)=∑i=0^n-1 xixt+ixm+i. We transform the function into a special form by decomposing the F2^n, so that it is easier to obtain the Fourier transform of the function. Then we use the relationship between the Hamming weight and nonlinearity with the Fourier transform, and give the formula by which one can calculate the Hamming weight and the nonlinearitv of these two classes of functions.
出处 《数学进展》 CSCD 北大核心 2015年第5期728-736,共9页 Advances in Mathematics(China)
基金 国家自然科学基金(No.61402522) 数学工程与先进计算国家重点实验室开放基金
关键词 布尔函数 旋转对称 非线性度 Boolean functions rotation-symmetric nonlinearity
  • 相关文献

参考文献8

  • 1Carlet, C., Boolean functions for cryptography and error correcting codes, In: Boolean Models and Methods in Mathematics, Computer Science, and Engineering (Crama, Y. and Hammer, P. eds.), Cambridge: Cambridge University Press, 2010.
  • 2Ciungu, L.C., Cryptographic Boolean functions: Thus-Morse sequences, weight and nonlinearity, Ph.D Thesis, Buffalo: University at Buffalo, 2010.
  • 3Cusick, T.W. and St~ni~, P., Fast evaluation, weights and nonlinearity of rotation-symmetric functions, Discrete Math., 2002, 258(1): 289-301.
  • 4Kim, H., Park, S.-M. and Hahn, S.G., On the weight and nonlinearity of homogeneous rotation symmetric Boolean functions of degree 2, Discrete Appl. Math., 2009, 157(2): 428-432.
  • 5Pieprzyk, J. and Qu, C.X., Fast hashing and rotation-symmetric functions, J. Univers. Comput. Set., 1999, 5(1): 20-31.
  • 6St~ni~, P. and Maitra, S., Rotation symmetric Boolean functions--count and cryptographic properties, Dis- crete Appl. Math., 2008, 156(10): 1567-1580.
  • 7Wang, B., Zhaug, X.Y. and Chen, W.H., The Hamming weight and nonlinearity of a type of rotation symmetric Boolean function, Acta Math. Sin., Chin. Set., 2012, 55(4): 613-626 (in Chinese).
  • 8Zhang, X.Y., Guo, H., Feng, R.Q. and Li, Y.F., Proof of a conjecture about rotation symmetric functions, Discrete Math., 2011, 311(14): 1281-1289.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部