摘要
记X_t(x)为由布朗运动驱动的随机微分方程的解,x为其初值.如果Hrmander条件成立且方程的解全局存在,本文证明了X_t(x)的分布关于初值x在全变差范数下连续.
Let Xt (x) be the solution of stochastic differential equation driven by Brownian motion, here x is the initial value. If the HSrmander's condition holds and the solution globally exists, we prove that the law of Xt(x) is continuous in variable x with respect to the total variation distance.
出处
《数学进展》
CSCD
北大核心
2015年第5期783-788,共6页
Advances in Mathematics(China)
基金
supported by the Youth Scientific Research Fund of Hunan Normal.University(No.Math140650)
the Scientific Research Foundation for Ph.D Hunan Normal University(No.Math140675)