期刊文献+

随机微分方程解的分布关于初值在全变差范数下的连续性(英文)

The Continuity of SDE With Respect to Initial Value in the Total Variation
原文传递
导出
摘要 记X_t(x)为由布朗运动驱动的随机微分方程的解,x为其初值.如果Hrmander条件成立且方程的解全局存在,本文证明了X_t(x)的分布关于初值x在全变差范数下连续. Let Xt (x) be the solution of stochastic differential equation driven by Brownian motion, here x is the initial value. If the HSrmander's condition holds and the solution globally exists, we prove that the law of Xt(x) is continuous in variable x with respect to the total variation distance.
作者 彭旭辉
出处 《数学进展》 CSCD 北大核心 2015年第5期783-788,共6页 Advances in Mathematics(China)
基金 supported by the Youth Scientific Research Fund of Hunan Normal.University(No.Math140650) the Scientific Research Foundation for Ph.D Hunan Normal University(No.Math140675)
关键词 随机微分方程 Hormander条件 强Feller性 stochastic differential equations HSrmander's condition strong Feller property
  • 相关文献

参考文献10

  • 1Bally, V. and Caramellino, L., On the distance between probability density functions, Electron. J. Probab., 2014, 19: Article 110, 33 pages.
  • 2Bogachev, V.I., Differentiable Measures and the Malliavin Calculus, Math. Surveys Monogr., Vol. 164, Providence, RI: AMS, 2010.
  • 3Carmona, P., Existence and uniqueness of an invariant measure for a chain of oscillators in contact with two heat baths, Stochastic Process. Appl., 2007, 117(8): 1076-1092.
  • 4Dong, Z. and Peng, X.H., Malliavin matrix of degenerate SDE and gradient estimate, Electron. J. Probab., 2014, 19: Article 73, 26 pages.
  • 5Dong, Z., Peng, X.H., Song, Y.L. and Zhang, X.C., Strong Feller properties for degenerate SDEs with jumps, 2013, arXiv: 1312.7380.
  • 6Malicet, D. and Poly, G., Properties of convergence in Dirichlet structures, J. Funct. Anal., 2013, 264(9): 2077-2096.
  • 7Rey-Bellet, L., Ergodic properties of Markov processes, In: Open Quantum Systems II, Lecture Notes in Math., Vol. 1881, Berlin: Springer-Verlag, 2006, 1-39.
  • 8Rey-Bellet, L. and Thomas, L.E., Asymptotic behavior of thermal nonequilibrium steady states for a driven chain of anharmonic oscillators, Comm. Math. Phys., 2010, 215(1): 1-24.
  • 9Zhang, X.C., Densities for SDEs driven by degenerate a-stable processes, Ann. Probab., 2014, 42(5): 1885- 1910.
  • 10Zhang, X.C., Derivative formulas and gradient estimates for SDEs driven by a-stable processes, Stochastic Process. Appl., 2013, 123(4): 1213-1228.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部