期刊文献+

大型薄壁贮箱焊接区等应力优化设计 被引量:4

Stress optimization of the weld zone of large thin-walled tank structures
下载PDF
导出
摘要 在内压载荷作用下,大型薄壁贮箱结构圆筒壳与半球壳的变形不协调,导致焊接区有较大弯曲应力,然而采用传统方法难以实现等应力设计。从应力传递的角度来说,消除弯曲应力,就是实现整个截面均匀传力。基于此,本文首先对传统方法设计出的薄壁贮箱焊接区进行有限元分析,获得应力分布规律,发现焊缝附近横向应力的传力路径在焊接区附近完成了从内壁向外壁的改变;然后基于控制传力路径的思想,在焊接区两侧的过渡环和圆筒壳厚区构造削弱槽,以实现焊接区均匀传力;最后采用非支配排序遗传算法进行参数优化,在焊接区获得了较均匀的应力分布。与传统设计方案相比,本文优化设计后的应力梯度降低了80%,应力峰值降低了40%。 While a large thin-walled tank structure is subjected to internal pressure, large local bending moment and stress gradient is formed in the weld zone between the cylinder shell and the semi-spherical shell. It is known that it is difficult to realize the constant strength design through the traditional method. Also, the topological optimization is relatively difficult due to the existence of internal pressure on the design region. In this paper, finite element analysis is conducted to analyze the stress field of the conventional design firstly. It is discovered that there is a change of stress transmission path from the inner wall to the outer wall, which produces a high stress gradient in the weld zone. Secondly, based on the concept of stress transmission path control, two weakened zones are constructed respectively in the transition ring and the thick section of cylinder shell. Then a parameteroptimization model is formed. Finally, Non-dominated Sorting Genetic Algorithm(NSGA) is adopted for the parameter optimization, more uniform stress distribution of the weld zone can be obtained and the stress gradient is reduced by 80% and the maximum stress value is reduced by 40%.
出处 《应用力学学报》 CAS CSCD 北大核心 2015年第4期593-596,704-705,共4页 Chinese Journal of Applied Mechanics
关键词 大型薄壁贮箱 焊接区 等应力优化 控制传力路径 large thin-walled tank structure,weld zone,stress optimization,control of stress transmission path
  • 相关文献

参考文献5

  • 1周广文.推进剂贮箱优化设计的思考[J].导弹与航天运载技术,2011(1):26-28. 被引量:12
  • 2铁摩辛柯.板壳理论[M].北京:科学出版社,1977.
  • 3Zhan Zhihui, Zhang Jun, Li Yun, et al. Adaptive particle swarm optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2009, 39(6): 1362-381.
  • 4郝鹏,王博,李刚,王小军.基于代理模型和等效刚度模型的加筋柱壳混合优化设计[J].计算力学学报,2012,29(4):481-486. 被引量:25
  • 5Chen H, Ooka R, Kato S. Study on optimum design method for pleasant outdoor thermal environment using genetic algorithms(GA) and coupled simulation of convection radiation and conduction[J]. Building and Environment, 2008, 43(1): 18-30.

二级参考文献13

  • 1刘克龙,姚卫星,穆雪峰.基于Kriging代理模型的结构形状优化方法研究[J].计算力学学报,2006,23(3):344-347. 被引量:34
  • 2吴德财,徐元铭,贺天鹏.新的复合材料格栅加筋板的平铺等效刚度法[J].力学学报,2007,39(4):495-502. 被引量:10
  • 3王江,黄诚,徐卫秀,盛祖铭,马斌捷,敖林.网格加筋中长圆柱壳网格角度的优化分析[J].强度与环境,2007,34(4):26-31. 被引量:7
  • 4Lanzi L, Giavotto V. Post-buckling optimization of composite stiffened panels: computations and experiments[J]. Composite Structures, 2006, 73 (2) : 208- 220.
  • 5Huang C,Zhang X,Wang B,et al. Optimization of an axially compressed ring and stringer stiffened cylinder structure with explicit FEM method [A]. 6^th China- Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems[C]. Kyoto,2010.
  • 6Venkataraman S. Modeling, Analysis and Optimization of Cylindrical Stiffened Panels for Reusable Launch Vehicle Structures[D]. University of Florida, 1999.
  • 7Jaunky N,Knight N F,Ambur D R. Optimal design of general stiffened composite circular cylinders for global buckling with strength constraints[J]. Composite Structures, 1998,41(3):243-252.
  • 8Rikards R, Abramovich H, Kalnins K,et al. Surrogate modeling in design optimization of stiffened composite shells[J]. Composite Structures, 2006, 73 ( 2 ) : 244- 251.
  • 9Phillips J L,Gurdal Z. Structural Analysis and Optimum Design of Geodesically Stiffened Composite Panels[R]. Report NASA CCMS-90-50,1990,3-248.
  • 10Chen H J,Tsai S W. Analysis and optimum design of composite grid structures[J]. Journal of Composite Materials, 1996,30(4) : 503-534.

共引文献53

同被引文献39

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部