期刊文献+

Tc-P共掺杂单层MoS_2光电特性的第一性原理计算 被引量:1

First-principles Calculation of Optical-Electrical Properties of Single-layer MoS_2 with Tc-P Doping
下载PDF
导出
摘要 采用第一性原理的贋势平面波方法,对比研究了未掺杂和掺杂过渡金属Tc、非金属P及Tc-P共掺杂的单层MoS2的电子结构和光学性质。计算结果表明:掺杂改变了费米面附近的电子结构,使得导带向低能方向偏移,并且带隙由K点转化为Γ点,形成Γ点的直接带隙半导体。掺杂P使带隙值变小,形成p型半导体;掺杂Tc使带隙变宽,形成n型半导体;Tc-P共掺杂,由于p型和n型半导体相互调制,使得单层MoS2转变为性能更优的本征半导体;掺杂使光跃迁强度减小,且向低能方向偏移。 The electronic structures and optical properties of single-layer MoS2 with Tc doping, P doping and Tc-P doping were calculated by density functional theory (DFT) of the first-principles pseudo potential wave method. The calculated results show that element doping can change the electron structures of single-layer MoS2 near the Fermi surface and shift the conduction bands to the direction of low energy. Single-layer MoS2 is a direct-band-gap semiconductor with the band gap from K-point into/'-point, respectively. The single-layer MoS2 is converted to a p-type semiconductor and the band gap value is reduced by P-doping. The singlelayer MoS2 is converted to a n-type semiconductor and the band gap value is increased by Tc- doping. The sigle-layer MoS2 of Tc-P codoping is modulated to the intrinsic semiconductor of better performance for a n-type and a p-type semiconductor modulation with each other. The transition strength is reduced and moved to the direction of low energy by doping.
出处 《半导体光电》 CAS 北大核心 2015年第4期582-587,共6页 Semiconductor Optoelectronics
基金 贵州省科技厅创新人才基金项目[黔科合J字(2011)4002] 贵州省科学技术基金项目[黔科合J字LKM(2013)15]
关键词 电子结构 光学性质 第一性原理 掺杂 MOS2 electronic structures optical properties first-principles doping MoS2
  • 相关文献

参考文献19

  • 1Singh N,Jabbour G, Schwingenschlogl U. Optical and photocatalytie properties of two-dimensional MoS2 [J]. Eur. Phys. J. B,2012,85(11): 392-4.
  • 2Korn T, Heydrich S, Hirmer M, et al. Low- temperature photocarrier dynamics in monolayer MoS2 [J]. Appl. Phys. Lett. , 2011,99(10) : 102109-3.
  • 3Tonndorf P, Sehmidt R, Bettger P, et al. Photoluminescenee emission and Raman response of monolayer MoS2, MoSe2, and WSez [ J ]. Opt. Express, 2013, 21(4): 4908-4916.
  • 4Dominko R, Arcon D, Mrzel A. Dichaleogenide nanotube electrodes for Li-ion batteries[J]. Adv. Mater., 2002, 14(21): 1531-1534.
  • 5LateDJ,Liu B, Matte H S, Dravid V P, Rao C N. Hysteresis in single-layer MoSz field effect transistors [J]. ACSNano, 2012, 6(6): 5635 - 5641.
  • 6Yin Z Y, Li H, Jiang L, et al. Single-layer MoS2 phototransistors[J]. ACS Nano, 2012, 6(1) :74-80.
  • 7Yoon Y,Ganapathi K, Salahuddin S. How good can monolayer MoS2 transistors be[J]. Nano Lett. , 2011, 11(9) : 3768-3773.
  • 8Yoon J,Park W, Bae G Y, et al. Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes[J]. Small, 2013,19(9) :3295-3300.
  • 9RadisavljeVic B,Radenovic A, Brivio J, et al. Single- layer MoS2 transistors [ J ]. Nature Nanotechnol. , 2011, 6..147-150.
  • 10Popov I,Seifert G, Tomanek D. Designing electrical contacts to MoS2 monolayers: a computational study [J]. Phys. Rev. Lett., 2012,108(15):156802-5.

二级参考文献39

  • 1Nakamura S;Mukai T;Senoh M.查看详情[J],Applied Physics Letters19941687.
  • 2Wilson R G;Schwartz R N;Abernathy C R;Peartor S J; Newman N; Rubin M; Fu T; Zavada J M.查看详情[J],Applied Physics Letters1994992.
  • 3Steckl A J;Birkhahn R.查看详情[J],Applied Physics Letters19981700.
  • 4Steckl A J;Zavada J M.查看详情[J],MRS Bulletin199933.
  • 5Steckl A J;Heinkenfeld J C;Lee D S;Garter M J; Baker C C; Wang Y; Jones R.查看详情[J],IEEE Journal of Selected Topics in Quantum Electronics2002749.
  • 6Kim J H;Shepherd N;Davidson M;Holloway P H.查看详情[J],Applied Physics Letters2003641.
  • 7Kim J H;Davidson M R;Holloway P H.查看详情[J],Applied Physics Letters20034746.
  • 8Kim J H;Holloway P H.查看详情[J],Journal of Applied Physics20044787.
  • 9Pan X J;Zhang Z X;Jia L;Li H; Xie E Q.查看详情[J],Journal of Alloys and Compounds2008579.
  • 10潘孝军;张振兴;王涛;李晖 谢二庆.查看详情[J]物理学报,20083786.

共引文献36

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部