摘要
对于面心立方结构的纳米金属,晶粒尺寸对孪生厚度(孪生核)的影响虽已有研究,但仍有待深入.本论文以Cu-30%Zn合金为模型材料,通过高压扭转变形技术、等径角挤压连同轧制技术变形得到晶粒尺寸在5~500nm的样品.透射电子显微镜观察发现:变形孪晶的片层厚度随晶粒尺寸的减小而减小,当晶粒尺寸小于20nm以后,孪晶厚度为(111)晶面间距(层错);另外,层错存在于各个不同尺寸范围的晶粒内,表明层错不受晶粒尺寸影响.研究结果表明在低层错能超细晶材料中,孪生变形是通过从晶界连续发射不全位错(层错)形成的.
For nanostructured fcc metals, grain size influence on deformation twinning and stacking fault has been investigated in literature, nevertheless, it still need further study to go deep for a better understanding. We selected Cu-30%Zn alloy as a model material. High pressure torsion (HPT), equal channel pressing (ECAP) followed by cold rolling were used to achieve a wide range of grain size from about 5 nm to 500nm. It was found that, with decreasing the grain size down to 20nm, twin thickness gradually reduces to one (111) atomic plane space (stacking fault) ; while stacking fault exists within grains with the grain sizes of whole range. Our results indicate the twinning in ultra-fine alloys with low stacking fault energy is operated via partial dislocation (stacking fault) emission from grain boundaries.
出处
《材料科学与工程学报》
CAS
CSCD
北大核心
2015年第4期496-502,共7页
Journal of Materials Science and Engineering
基金
国家重大基础科学研究资助项目(2012CB932203)
杰出青年科学基金资助项目(51225102)