期刊文献+

一种快速复数线性Bregman迭代算法及其在ISAR成像中的应用 被引量:5

A fast complex linearized Bregman iteration algorithm and its application in ISAR imaging
原文传递
导出
摘要 为实现具有任意稀疏结构的多量测向量(multiple measurement vectors,MMV)问题的快速重构.本文提出一种快速复数线性Bregman迭代算法(fast complex linearized Bregman iteration algorithm,FCLBI)并将其应用于逆合成孔径雷达(inverse synthetic aperture radar,ISAR)成像.首先,构建了任意稀疏结构的MMV信号模型并分析了其信号特征;其次,推导了复数条件下FCLBI算法的迭代公式用于重构MMV问题,将算法拓展到复数域使其更具普适性;然后,通过估计Bregman迭代过程中的停滞步长与感知矩阵优化相结合的方式减少迭代次数,从而可加快运算速度;最后,将算法应用于ISAR成像,进一步提高了稀疏恢复理论用于ISAR成像时的速度和抗噪性能.仿真和实测数据实验验证了算法的有效性. To implement fast reconstruction of the multiple measurement vectors (MMV) problem under arbitrary sparse structures, a fast complex linearized Bregman iteration (FCLBI) algorithm is proposed and applied to inverse synthetic aperture radar (ISAR) imaging. First, a signal model of an arbitrary sparse structure is established and its signature is analyzed. Second, an iterative formula for the FCLDI algorithm is deduced in a complex domain to recover the signals of the arbitrary sparse structure, thus extending its universality for complex-valued data. Third, by combining stagnation step estimation and sensing matrix optimization, the total iterative numbers are decreased to improve computational efficiency. Finally, the algorithm is applied to ISAR imaging, which reduces imaging time. Simulations and experiments with real-world data show the effectiveness and robustness of the proposed algorithm.
出处 《中国科学:信息科学》 CSCD 北大核心 2015年第9期1179-1196,共18页 Scientia Sinica(Informationis)
关键词 多量测向量 线性Bregman迭代 逆合成孔径雷达 复数 multiple measurement vectors, linearized Bregman iteration, inverse synthetic aperture radar, complexvalued data
  • 相关文献

参考文献6

二级参考文献107

  • 1Donoho D L.Compressed sensing[J].IEEE Transaction on Information Theory,2006,52(4):1289-1306.
  • 2Haupt J D.New theory and methods in adaptive and compressive sampling for sparse discovery[D].[Ph.D.dissertation] ,University of Wisconsin-Madison,2009.
  • 3Candès E,Romberg J,and Tao T.Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J].IEEE Transaction on Information Theory,2006,52(2):489-509.
  • 4Candès E and Tao T.Near-optimal signal recovery from random projections:universal encoding strategies[J].IEEE Transaction on Information Theory,2006,52(12):5406-5425.
  • 5Zhang Lei,Xing Meng-dao,and Qiu Chen-wei.Achieving higher resolution ISAR imaging with limited pulses via compressed sampling[J].IEEE Geoscience and Remote Sensing Letters,2009,6(3):567-571.
  • 6Buck J R,Krause B W,and Malm A I R,et al..Synthetic Aperture Imaging at Optical Wavelengths[C].CLEO/QELS 2009.Baltimore,MD.2009:1-2.
  • 7Gupta I J,Beals M J,and Moghaddar A.Data extrapolation for high resolution radar imaging.IEEE Transaction on Antennas and Propagation,1994,42(11):1540-1545.
  • 8Larsson E G and Liu G.High-resolution SAR imaging with angular diversity.IEEE Transaction on Aerospace and Electronic Systems,2001,37(4):1359-1372.
  • 9Cuomo K M,Piou J E,and Mayhan J T.Ultrawide-band coherent processing.IEEE Transaction on Antennas and Propagation,1999,47(6):1094-1107.
  • 10Donoho D L.Compressed sensing[J].IEEE Trans.Inform.Theory,2006,52(4):1289-1306.

共引文献66

同被引文献131

  • 1保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社,2006:230-231.
  • 2ENDER J, AMIN M G, FORNARO G, et al. Recent advances in radar imagin [From the Guest Editors] [J]. IEEE Signal Processing Magazine, 2014, 31(4), 15, 158.
  • 3CANDES E. The restricted isometry property and its implication for compressed sensing[J]. Comptes Rendus Mathematique, 2008, 346(9/10): 589-592.
  • 4BARANIUK R and STEEGHS P. Compressive radar imaging]C]. IEEE Radar Conference, Waltham, MA, 2007: 128-133.
  • 5HERMAN M A and STROHMER T. High-resolution radar via compressed sensing[J]. IEEE Transactions on Signal Processing, 2009, 57(6): 2275-2284.
  • 6ENDER J. On compressive sensing applied to radar[J]. Signal Processing, 2010, 90(5): 1402-1414.
  • 7POTTER L C, ERTIN E, PARKER J T, et al. Sparsity and compressed sensing in radar imaging[J]. Proceedings of the IEEE, 2010, 98(6): 1006-1020.
  • 8吴一戎.稀疏微波成像的理论、体制和方法研究[R].中国科学院,2010.
  • 9ROSSI M, HAIMOVICH A M, and ELDAR Y C. Spatial compressive sensing for MIMO radar[J]. IEEE Transactions on Signal Processing, 2014, 62(2): 419-430.
  • 10LIU Hongchao, JIU Bo, LIU Hongwei, et al. Super-resolution ISAR imaging based on sparse Bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8) 5005-5013.

引证文献5

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部