期刊文献+

材料和结构参数对悬壁梁式压电振子机电耦合性能的影响 被引量:1

Effects of physical and geometrical parameters on electromechanical coupling characteristics of a cantilevered piezoelectric vibrator
下载PDF
导出
摘要 对材料和结构参数对压电和基板不等长的矩形截面悬臂梁式双晶压电振子机电耦合性能影响进行研究。由Hamilton原理推导了压电振子振动方程模型,并试验验证了模型的准确性。理论分析显示,当电路阻抗匹配时,转换效率最大,且当粘性阻尼系数相同时,最优转换效率随着机电耦合系数增大而增大。压电振子机电耦合系数和压电材料机电耦合因子成正比;随着压电与基板模量比增大,机电耦合系数增大;压电与基板密度比对机电耦合系数影响微弱;机电耦合系数随压电与基板长度比和厚度比都呈先增后减趋势,存在最优长度比和厚度比使机电耦合系数达到最大值。结构优化后的机电耦合系数随模量比的增加而增大;不同模量比和密度比条件下,最佳长度比变化较小,总体变化范围为0.6~0.7;模量比对最佳厚度比影响显著,随着模量比增大最佳厚度比减小。研究成果可用以指导压电振子的设计。 Here, the effects of physical and geometrical parameters on the electromechanical coupling characteristics of a one-step cantilevered piezoelectric energy harvester were studied.The model equation governing vibration of a piezoelectric vibrator was derived based on Euler-Bernoulli beam assumption in the linear and elastic range, and validated through comparison of theoretical results with experimental ones.Results revealed that the impedance matching leads to the maximum mechanical to electrical energy transfer efficiency;the optimal energy transfer efficiency increases with increase in the electromechanical coupling coefficient under a constant air and structural damping;the coupling coefficient is proportional to the material electromechanical coupling factor;and the coupling coefficient increases with increase in the modulus ratio between piezoelectric structure and base plate;the effect of piezoelectrics structure to base plate density ratio on the coupling coefficient is relatively smaller;with increase in length and thickness ratios between them,the coupling coefficient increases initially then decreases;there are the optimal length ratio and the optimal thickness ratio,they make the coupling coefficient reach the maximum;the optimal length ratio has a variation range of 0.6~0.7;the modulus ratio has an obvious effect on the optimal thickness ratio,the latter decreases with increase in the former.The study results provided a guidance for design of piezoelectric vibrators.
作者 林政 张永良
出处 《振动与冲击》 EI CSCD 北大核心 2015年第17期147-151,179,共6页 Journal of Vibration and Shock
基金 国家自然科学基金(51079072 51279088) 863计划(2012AA052602) 水沙科学与水利水电工程国家重点实验室自主课题资助(2013-KY-3)
关键词 压电俘能 优化 材料特性 结构尺寸 piezoelectric energy harvesting optimization material properties geometrical parameters
  • 相关文献

参考文献11

  • 1Sodano H A, Inman D J, Park G. A review of power harvesting from vibration using piezoelectric materials [ J ]. Shock and Vibration Digest, 2004, 36(3) : 197 -206.
  • 2Anton S R, Sodano H A. A review of power harvesting using piezoelectric materials ( 2003 - 2006 ) [ J ]. Smart Materials and Structures, 2007, 16(3) : R1.
  • 3Beeby S P, Tudor M J, White N M. Energy harvesting vibration sources for microsystems applications [ J ]. Measurement Science and Technology,2006,17 (12) : R175.
  • 4Cook-Chennauh K A, Thambi N, Sastry A M. Powering MEMS portable devices--a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems [ J ]. Smart Materials and Structures, 2008, 17(4) : 043001.
  • 5Rupp C J, Evgr',ffov A, Maute K, et al. Design of piezoelectric energy harvesting systems : a topology" optimization approach based on muhilayer plates and shells [ J ]. Journal of Intelligent Material Systems and Structures, 2009, 20(16) : 1923 - 1939.
  • 6Dietl J M, Garcia E. Beam shape optimization for power harvesting[ J ]. Journal of Intelligent Material Systems and Structures, 2010, 21(6): 633-646.
  • 7Matova S P, Renaud M, Jambunathan M, et al. Eftect of length/width ratio of tapered beams on the performance of piezoelectric energy harvesters [ J]. Smart Materials and Structures, 2013, 22(7): 075015.
  • 8邓冠前,陈仲生,陶利民.不同形状压电振子的振动发电行为研究[J].压电与声光,2010,32(3):440-443. 被引量:15
  • 9单小彪,袁江波,谢涛,陈维山.不同截面形状悬臂梁双晶压电振子发电能力建模与实验研究[J].振动与冲击,2010,29(4):177-180. 被引量:20
  • 10姜德龙,程光明,曾平,庞建志.悬臂梁双压电晶片振子发电性能研究[J].机械设计与制造,2011(1):121-123. 被引量:12

二级参考文献26

  • 1娄利飞,杨银堂,樊永祥,李跃进.压电薄膜微传感器振动模态的仿真分析[J].振动与冲击,2006,25(4):165-169. 被引量:16
  • 2LI Xia CHEN Wei-shan XIE Tao LIU Jun-kao.Novel high torque bearingless two-sided rotary ultrasonic motor[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2007,8(5):786-792. 被引量:7
  • 3KIM Sunghwan, CLARK W W, WANG Qingming. Piezoelectric energy harvesting using a diaphragm structure[C]//San Diego, CA, USA: Sensors and Smart Structures, 2006, 5 055: 307-308.
  • 4BAKER J, ROUNDY S, WRIGHT P, Alternative geometries for Increasing power density in vibration energy scavenging for wireless sensor networks [C]// California: 3rd International Energy Conversion Engineering Conference, 2005, 8: 1-12.
  • 5ANDERSON T A, SEXTON D W. A vibration energy harvesting sensor platform for Increased Industrial efficiency[C]//San Diego, CA, USA: Sensors and Smart Structures,2006, 6174: 1-9.
  • 6Timothy Eggbom.Analytical Models to Predict Power Harvesting with Piezoelectric Materials. Virginia:Virginia Polytechnic Institute and State University, 2003.
  • 7Mikio Umeda,Kentaro Nakamura and Sadayuki Ueha .Analysis of the Transformation of Mechanical Impact Energy to Electric Using Piezoelectric Vibrator[J].Jpn .J .Appl. phys, 1996,35:3267-3273.
  • 8小飒工作室.最新经典ANSYSjiWorkbench[M].北京:电子工业出版社,2004.
  • 9M.S.Weinberg, "Working equations for piezoelectric actutors and sensors," Journal of Microelectromechanical Systems, 1999: 529-533.
  • 10张福学.现代压电学[M].北京:科学出版社,2001..

共引文献54

同被引文献12

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部