期刊文献+

弥散裂缝模型水力压裂数值方法的网格敏感性分析 被引量:2

Mesh Sensitivity Analysis of the Solution to Hydraulic Fracture Problems Based on a Smeared Crack Model
下载PDF
导出
摘要 在非线性岩土/石力学问题中,网格质量是影响计算结果的一个重要因素.本文分析了弥散裂缝模型水力压裂数值求解方法中单元高宽比(AR)对计算结果的影响.材料的弹性部分采用线弹性和多孔弹性两种本构关系,屈服和破坏准则采用 Drucker -Prager(DP)和 Mohr -Coulomb(MC)两种模型.通过综合分析,无论采用何种本构关系,均存在网格敏感性问题.当裂缝的传播方向已知时,可以将单元的 AR 值控制在2.8~8.0之间,以避免弥散裂缝模型的网格敏感性问题,并得到稳定的结果.如果裂缝传播方向未知,建议使用线弹性本构关系和 DP 或者 MC 塑性模型,同时建议 AR 的取值为1.0. Mesh quality is an important factor that affects the simulation results in nonlinear soil /rock mechanic problems.The effect of aspect ratio of element (AR)on calculation was analyzed in numerical solution of hydraulic fracture for the smeared crack model.Elasticity was measured by adopting the porous elastic (PE)and linear elastic (LE)constitutive models.Regarding to material yielding and failure,both the Drucker-Prager (DP)and Mohr-Coulomb (MC)models were considered.Based on a comprehensive analysis,it is concluded that no matter which constitutive model is adopted,there always exists mesh sensitivity.If the direction of fracture propagation is known,the AR should be between 2.8 and 8.0 to obtain stable results.If the direction is unknown,it is recommended that the LE constitutive model as well as the MC /DP plasticity model should be used together with the AR equal to 1.0.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第9期1337-1341,共5页 Journal of Northeastern University(Natural Science)
基金 中央高校基本科研业务费专项资金资助项目(N110301001) 国家自然科学基金资助项目(51474048) 高等学校博士学科点专项科研基金资助项目(20120042110001)
关键词 网格敏感性 水力压裂 弥散裂缝模型 单元高宽比(AR) 有限单元法 mesh sensitivity hydraulic fracture smeared crack model finite element method
  • 相关文献

参考文献18

  • 1Rahman M M, Rahman M K. A review of hydraulic fracture models and development of an improved pseudo-3D model for stimulating tight oil gas sand [ J ]. Energy Sources, Part A :Recovery, Utilization, and Environmental Effects, 2010,32 (1):1416 - 1436.
  • 2Hu Y J, Chert G l, Cheng W P, et al. Simulation of hydraulic fracturing in rock mass using a smeared crack model [ J ]. Computers and Structures,2013,137 ( 1 ) :72 - 77.
  • 3Pak A. Numerical modeling of hydraulic fracturing [ D ], Edmonton: University of Alberta, 1997.
  • 4Dugdale D S. Yielding of steel sheets containing slits [ J ]. Journal of the Mechanics and Physics of Solids, 1960,8 (2) :100 - 104.
  • 5Barenblatt G L. The mathematical theory of equilibrium cracks in brittle fracture[ J]. Advances in Applied Mechanics, 1962,7( 1 ) :55 - 129.
  • 6Mohammadnejad T, Khoei A R. An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model [ J ]. Finite Elements in Analysis and Design ,2013,73 ( 1 ) :77 - 95.
  • 7Lecampion B. An extended finite element method for hydraulic fracture problems [ J ]. Communications in Numerical Methods in Engineering,2009,25 ( 1 ) : 121 - 133.
  • 8Adachi J, Siebrits E, Peirce A, et al. Computer simulation of hydraulic fractures [ J ]. International Journal of Rock Mechanics & Mining Sciences, 2007,44 ( 5 ) :739 - 754.
  • 9Bazant Z P, Lin F B. Nonlocal smeared cracking model for concrete fracture [ J ]. Journal of Structural Engineering, 1988,114 ( 11 ) :2493 - 2510.
  • 10Bazant Z P ,Oh B H. Crack band theory for fracture of concrete [ J ] . Matdriaux et Constructions,1983,16(3) :155 -177.

二级参考文献1

共引文献34

同被引文献5

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部