关于Euler-Mascheroni常数的不等式与渐近展开式(英文)
Inequality and Asymptotic Expansion for the Euler-Mascheroni Constant
摘要
给出一个递推关系式来确定调和数的渐近展开式的系数.我们建立了Euler-Mascheroni常数的不等式.
We give a recurrence relation for determining the coefficients of asymptotic expansion for the harmonic number. We establish inequalities for the Euler-Mascheroni constant.
出处
《大学数学》
2015年第4期1-8,共8页
College Mathematics
参考文献20
-
1Alzer H. Inequalities for the gamma and polygamma functions [J]. Abh. Math. Sem. Univ. Hamburg, 1998, 68: 363-372.
-
2Anderson O D, Barnard R W, Richards K C, Vamanamurthy M K, Vuorinen M. Inequalities for zero-balanced hypergeometric functions [J]. Trans. Am. Math. Soc, 1995, 347 (5): 1713-1723.
-
3Rippon P J. Convergence with pictures [J]. Amer. Math. Monthly, 1986, 93 (6): 476-478.
-
4Tims S R, Tyrrell J A. Approximate evaluation of Euler's constant [J]. Math. Gaz. , 1971, 55 (391) : 65-67.
-
5T6th L. Problem E3432 [J]. Am. Math. Monthly, 1991, 98 : 264.
-
6Toth L. Problem Ea432 (Solution) [J]. Am. Math. Monthly, 1992, 99 (7): 684-685.
-
7Young R M. Eulers Constant [J]. Math. Gaz. , 1991, 75: 187-190.
-
8DeTemple D W. A quicker convergence to Euler's constant [J]. Am. Math. Monthly, 1993, 100 (5) : 468-470.
-
9Chen C P. Inequalities for the Euler-Mascheroni constant [J]. Appl. Math. Lett. , 2010, 23 (2) : 161-164.
-
10Negoi T. A faster convergence to the constant of Euler [J]. Gazeta Matematic6, seria A, 1997, 15: 111-113 (in Romanian).