摘要
依照Web2.0的"社会化标注"思想,针对基于内容的推荐算法(CBR)和协同过滤推荐算法(CF)存在的不足,提出了基于读者标签(Tags)的、融合图书"热门度"因子的个性化图书推荐的两个改进算法。利用统计分析软件R,重点对改进后的CBR算法进行实验分析和验证,结果表明,改进算法的图书个性化推荐效果有明显改善。
In accordance with "socialized tagging" of Web 2.0 and in view of the shortcomings of the content-based recommendation algorithm (CBR) and the collaborative filtering recommendation algorithm (CF), we proposed two refined book recommendation algorithms which are based on tags and combined with the factor of popularity. In this paper, a small-scale experiment using statistical analyzing software R was made along with an analysis of the refined content-based recommendation algorithm (NCBF). The experimental results show that the refined algorithms remarkably improved the effectiveness of personalized recommendation algorithm.
出处
《图书情报研究》
2015年第3期82-86,共5页
Library and Information Studies
基金
浙江工业职业技术学院2013年科研计划项目"个性化图书服务系统的应用研究"(项目编号:2014242)的研究成果之一
关键词
图书个性化服务
推荐算法
标签
热门度
personalized book service
recommendation algorithm
tag
popularity