期刊文献+

基于时间相关性的股票价格混合预测模型 被引量:5

A Hybrid model based on Time Correlation for Stock Price Forecasting
下载PDF
导出
摘要 对于金融市场决策而言,金融时间序列的分析预测扮演着越来越重要的角色。但通常的分析预测模型没有考虑金融时间序列数据内部的时间相关性问题,这在很大程度上影响了预测模型精度的进一步提高。因此提出一种新的股票价格混合预测模型,分别用ARIMA和基于时间测地线距离的SVM处理金融时序的线性和非线性成分。实验表明,该混合模型可以有效克服传统SVM核函数利用欧式距离表征时序数据相关性的不足,从而显著提高组合模型的预测精度。 Financial time series analysis and forecasting has drawn considerable attention as an active research for financial decision -making. However, many hybrid methods combining linear and nonlinear models do not in- corporate the time correlations knowledge in the financial time series data, which influences the generalization per- formance of the hybrid models. This paper presents a novel two stage hybrid forecasting model ARIMATGDSVM to make full use of the time correlation knowledge in the complex financial series data. In the hybrid model, the ARI- MA model and the proposed SVM based on time geodesic distance are used to deal with the linear and nonlinear components respectively. Finally, the sum of the two prediction results got in the different stages is regarded as the final forecasting result of the hybrid model. The experimental results show that the proposed hybrid model overcomes the limitation of the SVM in expressing time 'correlations by the Euclidean distance and improves greatly the forecasting accuracy.
出处 《经济问题》 CSSCI 北大核心 2015年第9期23-28,共6页 On Economic Problems
基金 国家自然科学基金面上项目"市场微观结构 特质波动率异象与MAX效应"(71371113) 教育部人文社会科学研究项目"市场微观结构 流动性风险与MAX效应"(13YJA790154)
关键词 ARIMA 支持向量机 时间测地线 股票价格预测 ARIMA Support Vector Machine (SVM) Time Geodesic Distance Stock Price Forecasting
  • 相关文献

参考文献20

  • 1Wang J J, Wang J Z, Zhang Z G, Guo S P. Stock Index Fore- casting Based on a Hybrid model [ J ]. Omega,2012,40 (6) : 758 - 766.
  • 2Zhang G P. Time Series Forecasting Using a Hybrid ARIMA and Neural Network Model[ J]. Neurocomputing, 2003, 50: 159 - 175.
  • 3Khashei M, Bijari M. A Novel Hybridization of Artificial Neural Networks and ARIMA Models for Time Series Fore- casting[J]. Applied Soft Computing,2011,11 (2) :2664 - 2675.
  • 4Vapnik V. The Nature of Statistical Learning Theory [ M ]. New York : Springer Verlag Press, 1995.
  • 5Tay F E H, Cao L J. Application of Support Vector Ma- chines in Financial Time Series Forecasting [ J ]. Omega, 2001, (29) :309 -317.
  • 6Huang W, Nakamori Y, Wang S Y. Forecasting Stock Mar- ket Movement Direction with Support Vector Machine [J]. Computers & Operations Research, 2005, ( 32 ) : 2513 - 2522.
  • 7Chatfield C. What is the ' Best' Method of Forecasting [ J]. Journal of Applied Statistics, 1998, ( 15 ) : 19 - 39.
  • 8程昌品,陈强,姜永生.基于ARIMA-SVM组合模型的股票价格预测[J].计算机仿真,2012,29(6):343-346. 被引量:27
  • 9Pai P F, Lin C S. A Hybrid ARIMA and Support Vector Ma- chines Model in Stock Price Forecasting [J]. Omega,2005, (33) :497 -505.
  • 10Nie H Z, Liu G H, Liu X M, Wang Y. Hybrid of ARIMA and SVMs for Short - Term Load Forecasting [ J ]. Energy Procedia,2012, (16) :1455 - 1460.

二级参考文献28

  • 1赵建,邵永革,黄炯,杨静宇.基于神经网络的股市预测[J].计算机研究与发展,1996,33(9):692-697. 被引量:10
  • 2Fama E, Blume M. Filter rules and stock market trading profits[J].Journal of Business, 1966, 39(1) : 226 - 241.
  • 3Jensen M, Bennington G. Random walks and technical theories: Some additional evidences[J]. Journal of Finance, 1970, 25(2): 469 - 482.
  • 4Sweeney R. Some New filter ruletests: Methods and results[J]. Journal of Financial and Quantitative Analysis, 1988, 23(3) : 285 - 300.
  • 5Brock W, Lakonishok J, LeBaron B. Simple technical trading rules and the stochastic properties of stock returns[J]. Journal of Finance, 1992, 47(5) : 1731 - 1764.
  • 6C, encay R. Non-linear prediction of security returns with moving average rules[J]. Journal of Forecasting, 1996, 15(3) : 165 - 174.
  • 7C, encay R, Stengos T. Moving average rules, volume and the predictability of security returns with feedforward networks [J]. Journal of Forecasting, 1998, 17(6): 401-414.
  • 8Dacorogna M, Gencay R, Muller U, et al. An introduction to high frequency finance [ M ]. San Diego and London: Academic Press, 2001.
  • 9Mtfller U, Dacorogna M, Dave R, et al. Volatilities of different time resolutions-analyzing the dynamics of market components[J]. Journal of Empirical Finance, 1997, 4(2) : 213 - 239.
  • 10Corsi F. A simplelong memory model of realized volatility[R]. Working Paper, University of Southern Switzerland, 2004.

共引文献57

同被引文献95

  • 1于志军,杨善林.基于误差校正的GARCH股票价格预测模型[J].中国管理科学,2013,21(S1):341-345. 被引量:15
  • 2韩京清,王伟.非线性跟踪─微分器[J].系统科学与数学,1994,14(2):177-183. 被引量:411
  • 3刘凤根,王晓芳,张敏.非线性跟踪—微分器及其在股价模拟和预测中的应用[J].系统工程,2006,24(5):81-87. 被引量:2
  • 4Wang Juiie,Wang Jianzhou,Zhang Z,et al. Stock index forecasting based on a hybrid model[JT. Omega, 2012,40 (6) ~758-766.
  • 5Pal Pingfeng,Lin C. A hybrid ARIMA and support vec- tor machines model in stock price foreeasting[J]. Ome- ga, 2005,33(6) :497-505.
  • 6Kim K. Financial time series forecasting using support vector machines[J]. Neuroeomputing, 2003,55 ( 1 - 2) : 307-319.
  • 7Huang Wei, Nakamori Y,Wang Shouyang. Forecasting stock market movement direction with support vector machine[J]. Computers ~ Operations Research, 2005, 32(10) :2513-2522.
  • 8Engle R F. Autoregressive conditional heteroscedastici- ty with estimates of the variance of United Kingdom in- flation[J]. Econometrica, 1982,50 (4) : 987 - 1007.
  • 9Bollerslev T. Generalized autoregressive condi-tional heteroskedasticity[J]. Journal of Econometrics, 1986,3 1(3) :307-327.
  • 10Mohammadi H, Su Lixian. International evidence on crude oil price dynamics~ Applications of ARIMA- GARCH models[J]. Energy Economics, 2010,32 ( 5 ) : 1001-1008.

引证文献5

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部