期刊文献+

Cu_2O/ZnO异质结构纳米线阵列的光电化学性能 被引量:5

Photoelectrochemical Performance of Cu_2O/ZnO Hetero-nanowire Arrays
下载PDF
导出
摘要 通过水热法和热还原法合成了Cu2O/ZnO异质结构纳米线阵列,研究了Cu2O/ZnO异质结构纳米线阵列的光电化学性能。与纯的ZnO纳米线阵列光阳极相比,这种Cu2O/ZnO异质结构光阳极在日光辐照时,展现出了更优异的光电化学性能。在1 V vs.Ag/Ag Cl偏压时,异质结构光阳极的光电流密度达到1.5 m A/cm2,是纯ZnO纳米线阵列的2倍多。这种光电化学性能的提高,一方面是由于Cu2O的加入,提高了光阳极对于可见光的吸收效率,增强了光生载流子的密度。另一方面,Cu2O和ZnO之间形成的空间电场加速了光生电子-空穴对的分离,从而提高了复合结构光阳极的光电化学性能。结果表明,用地球上储量丰富的元素合成的金属氧化物异质结,也可以实现利用太阳光分解水制备氢气。 Cu2O/ZnO hetero-nanowire arrays were synthesized by hydrothermal method followed by a thermal reduction process. In contrast to the pure ZnO nanowire array (NWA) photoanodes, the Cu20/ ZnO NWA photoanodes demonstrated superior photoelectrochemical (PEC) performance upon solar illumination. The optical current density of the different structured light anode reaches 1.5 mA/cm2 as 1 V vs. Ag/AgC1, is 2 times more than pure ZnO nanowire arrays. The enhancement was because the introduction of Cu2O enhanced the absorption efficiency of visible light and increased the photogenerated charge carrier concentration. In addition, the space electric field between Cu20 and ZnO accelerated the separation of the photogenerated electron-hole pairs and improved the PEC performance of the heterostructured photoanodes. The results indicate that metallic oxide heterojunction made up of earth-abundant elements can also realize hydrogen generation by solar water splitting.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2015年第8期2138-2143,共6页 Journal of Synthetic Crystals
基金 国家自然科学基金(51162005)
关键词 氧化锌 氧化亚铜 水热法 热还原 异质结 ZnO Cu2O hydrothermal method thermal reduction heterojunction
  • 相关文献

参考文献21

  • 1Tachibana Y, Vayssieres L, Dun'ant J R. Artificial Photosynthesis for Solar Water-splitting[ J ]. Nature Photonics,2012,6 ( 8 ) :511-518.
  • 2Hou J, Yang C, Cheng H, et al. High-performance p-Cu20/n-TaON Heterojunction Nanorod Photoanodes Passivated with an Uhrathin Carbon Sheath for Photoelectrochemical Water Splitting[ J]. Energy & Environmental Science,2014,7( 11 ) :3758-3768.
  • 3Bu Y, Chen Z, Li W, et al. Highly Efficient Photocatalytic Performance of Graphene-ZnO Quasi-shell-core Composite Material[ J ]. ACS Applied Materials & Interfaces,2013,23 ( 5 ) : 12361 - 12368.
  • 4Hendry E, Koeberg M, ORegan B, et al. Local Field Effects on Electron Transport in Nanostructured TiO2 Revealed by Terahertz Spectroscopy [J]. Nano Letters,2009,9(6) :2331-2336.
  • 5Zou X, Fan H, Tian Y, et al. Synthesis of Cu20/ZnO Hetero-Nanorod Arrays with Enhanced Visible Light-Driven Photocatalytic Activity [ J ]. Cryst. Eng. Comm. ,2014,16(6) :1149-1156.
  • 6Yang X, Wolcott A, Wang G, et al. Nitrogen-doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting[ J ]. Nano Letters,2009,9 (6) :2331-2336.
  • 7Lin Y G, Hsu Y K, Chen Y C, et al. Visible-Light-Driven Photoeatalytic Carbon-Doped Porous ZnO Nanoarchitectures for Solar Water-Splitting [J]. Nanoscale,2012,20(4) :6515-6519.
  • 8Chouhan N, Yeh C L, Hu S F, et al. Photocatalytic CdSe QDs-Decorated ZnO Nanotubes: an Effective Photoelectrode for Splitting Water[J]. Chemical Communications, 2011,47 ( 12 ) : 3493-3495.
  • 9Wang G, Yang X, Qian F, et al. Double-Sided CdS and CdSe Quantum Dot Co-Sensitized ZnO Nanowire Arrays for Photoelectrochemical Hydrogen Generation[ J]. Nano Letters ,2010,10 ( 3 ) : 1088-1092.
  • 10Wang X, Zhu H, Xu Y, et al. Aligned ZnO/CdTe Core-Shell Nanocable Arrays on Indium Tin Oxide: Synthesis and Photoelectrochemical Properties[ J]. ACS Nano ,2010,4(6) :3302-3308.

同被引文献38

  • 1Zhao Y,Wang H,Wu C,et al.Study on the Electroluminescence Properties of Diodes Based on n-Zn O/p-Ni O/p-Si Heterojunction[J].Optics Communications,2015,336:1-4.
  • 2Ozgur U,Hofstetter D,Morkoc H.Zn O Devices and Applications:A Review of Current Status and Future Prospects[J].Proceedings of the IEEE,2010,98(7):1255-1268.
  • 3Chen Y F,Liu F S,Hu Z L,et al.Preparation of Zn O with Various Crystal Morphologies from Industrial Zincslag by Oxidising Zinc Vapour[J].Materials Research Innovations,2012,16(5):372-376.
  • 4Nam K H,Kim D,Seo J,et al.Effect of Tetrapod Zn O Whiskers on the Physical and Moisture Barrier Properties of Transparent Polyimide/TZn O-W Composite Films[J].Macromolecular Research,2014,22(12):1243-1252.
  • 5Ahumada-Lazo R,Torres-Martínez L M,Ruíz-Gómez M A,et al.Photocatalytic Efficiency of Reusable Zn O Thin Films Deposited by Sputtering Technique[J].Applied Surface Science,2014,322:35-40.
  • 6Feng W L,Huang P.A Generalized Mechanism of 1D Zn O Rods Growth in Homogeneous Solution[J].Ceramics International,2014,40(7):8963-8967.
  • 7Peng Z W,Dai G Z,Zhou W C,et al.Photoluminescence and Raman Analysis of Novel Zn O Tetrapod and Multipod Nanostructures[J].Applied Surface Science,2010,256(22):6814-6818.
  • 8Wu L L,Wu Y S,LüW.Preparation of Zn O Nanorods and Optical Characterizations[J].Physica E.,2005,28(1):76-82.
  • 9Chang M,Cao X L,Zeng H B,et al.Enhancement of the Ultraviolet Emission of Zn O Nanostructures by Polyaniline Modification[J].Chemical Physics Letters,2007,446(4/6):370-373.
  • 10Yu W D,Li X M,Gao X D,et al.Effect of Zinc Sources on the Morphology of Zn O Nanostructures and Their Photoluminescence Properties[J].Applied Physics A.,2004,79(3):453-456.

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部