期刊文献+

气相阳离子交换法制备CoO纳米棒及其光学性能

Preparation and Optical Properties of CoO Nanorods by Gas-phase Cation Exchange Method
下载PDF
导出
摘要 以水热法合成的ZnO纳米棒为模板,采用气相阳离子交换法制备形貌可控、结晶性良好的CoO纳米棒。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线能谱(EDS)和紫外-可见吸收光谱仪(UVvis)对所得产物的物相组成、形貌、化学成分和光学性能进行表征与测试。结果表明,所得产物为立方相CoO纳米棒,直径在100~150 nm之间,具有较宽的紫外-可见光吸收范围,通过计算得其光学带隙为2.70 e V。此外,能谱分析线扫描探讨阳离子交换机理的研究表明,高温促使Co2+逐步取代Zn2+,导致ZnO纳米棒完全转变为CoO纳米棒。 Using ZnO nanorods synthesized by hydrothermal method as template, CoO nanorods with controllable morphologies and well crystallized were synthesized by gas-phase cation exchange method. The structure, morphologies, chemical composition and optical properties of the as-prepared CoO nanorods were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectrdmeter (EDS) and UV-visible spectroscopy (UV-vis). The results indicate that the CoO nanorods with cubic structure and the size is 100-150 nm in width. The CoO nanorods have a broad absorption peak in a wide range from UV to visble light and the band gap of is 2.70 eV. In addition, the cation exchange mechanism were investigated using EDS line scanning profiles. The results indicate that cobalt ion gradually replace zinc ion at high temperature, ZnO nanorods are completely converted into CoO nanorods.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2015年第8期2255-2259,2265,共6页 Journal of Synthetic Crystals
基金 国家科技支撑计划(2013BAK06B07) 辽宁省教育厅科学研究项目(L2013138)
关键词 气相阳离子交换 CoO纳米棒 光学性能 gas-phase cation exchange CoO nanorod optical property
  • 相关文献

参考文献19

  • 1Huang X L, Wang R Z, Wang Z L, et al. Homogeneous CoO on Graphene for Binder-Free and Ultralong-Life Lithium Ion Batteries [ J ]. Advanced Functional Materials ,2013,23 ( 35 ) :4345-4353.
  • 2Rakhi R B, Chen W, Cha D, et al. Substrate Dependent Self-Organization of Mesoporous Cobalt Oxide Nanowires with Remarkable Pseudocapacitance[ J]. Nano letters ,2012,12(5 ) :2559-2567.
  • 3Xie X, Li Y, Liu Z Q, et al. Low-Temperature Oxidation of CO Catalysed by Co304 Nanorods[ J]. Nature,2009,458(7239) :746-749.
  • 4Liao L, Zhang Q H, Su Z H, et al. Efficient Solar Water-Splitting Using a Nanocrystalline CoO Photocatalyst [ J ]. Nature Nanotechnology,2014, 9( 1 ) :69-73.
  • 5Mao Y Q, Zhou Z J, Ling T, et al. P-type CoO Nanowire Arrays and their Application in Quantum Dot-Sensitized Solar Cells[ J]. RSC Advances, 2013,4(3) : 1217-1221.
  • 6Ghosh M, Sampathkumaran E V, Rao C N R. Synthesis and Magnetic Properties of CoO Nanoparticles[ J ]. Chemistry of Materials ,2005,17 (9) : 2348-2352.
  • 7Meng Z C, Liu B, Zheng J B, et al. Electrodeposition of Cobalt Oxide Nanoparticles on Carbon Nanotubes, and Their Electroeatalytie Properties for Nitrite Electrooxidation [ J ]. Microchimica Acta, 2011,175 ( 3.-4 ) : 251-257.
  • 8Purkayastha D D, Sarma B, Bhattacharjee C R. Surfaetant-Assisted Low-Temperature Synthesis of Monodispersed Phase Pure Cubic CoO Solid Nanoparallelepipeds via Thermal Decomposition of Cobalt (11) Acetylacetonate[ J ]. Materials Letters ,2013,107:71-74.
  • 9Zhan Y J, Yin C R, Wen Z W, el al. Synthesis of CoO Fibers in Pyrolytic Process[ J]. Materials Letters,2003,57 (22-23) :3402-3405.
  • 10Son D H, Hughes S M, Yin Y, et al. Cation Exchange Reactions in Ionic Nanocrystals[ J]. Science,2004,306(5698) :1009-1012.

二级参考文献3

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部