期刊文献+

基于非结构/混合网格的脱体涡模拟算法 被引量:6

Detached-eddy simulation based on unstructured and hybrid grid
原文传递
导出
摘要 为了提高二阶精度有限体积算法的湍流数值模拟能力,在原始Roe格式基础上建立了与脱体涡模拟(DES)方法相匹配的二阶混合耗散自适应格式,根据流场信息自动调节格式耗散,并分别基于Spalart-Allmaras一方程湍流模型和k-ω剪切应力输运(SST)两方程湍流模型,发展了基于非结构/混合网格的DES方法。采用该方法计算了雷诺数为3 900的圆柱绕流和NACA 0021翼型60°大迎角分离流两个典型算例,通过与试验数据以及其他数值结果的对比验证了该方法的可行性。同时开展了不同数值格式、湍流模型的对比分析,研究结果表明:采用混合格式的DES算法能够解析更小尺度的湍流涡结构、计算数据更接近试验值;本文的DES类算法受其基准湍流模型影响较小。 To improve the turbulence simulation ability of the second order finite-volume algorithm based on unstructured and hybrid grid, a hybrid second order scheme is established by modifying the dissipation term of the standard Roe flux-difference splitting scheme and the numerical dissipation of the scheme can be self-adapted according to the detached-eddy simu- lation (DES~ flow field information. The credibility of the approach is supported by two typical numerical examples of its application: Re=3 900 circular cylinder and NACA 0021 airfoil at high angle of attack (60°), and the DES predictions are compared with experimental data and with other numerical solutions. The DES methods based on both the one equation Spalart-AIImaras turbulence model and the two equation k-ω shear stress transport (SST) model are used in the computation. The effects of numerical schemes and turbulence models are also discussed in the study, which shows that the scale of turbulence structure resolved by the hybrid scheme is smaller than that resolved by the standard Roe scheme and the corresponding flow field is better; meanwhile the DES methods used in this paper are little affected by their RANS-based models.
出处 《航空学报》 EI CAS CSCD 北大核心 2015年第9期2900-2910,共11页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(91016001 11272339)~~
关键词 脱体涡模拟 二阶精度格式 自适应耗散 非结构网格 混合网格 有限体积法 detached-eddy simulation second order scheme self-adaptive dissipation unstructured grid hybrid grid finite-volume method
  • 相关文献

参考文献31

  • 1Jiang Z, Xiao Z L, Shi Y P, et al. Constrained large-eddy simulation of wall-bounded compressible turbulent flows[J]. Physics of Fluids, 2013, 25(10): 106102.
  • 2Spalart P R, Jou W H, Strelets M, et al. Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach[C]//Proceedings of 1st AFOSR International Conference On DNS/LES. Columbus: Greyden Press, 1997: 137-147.
  • 3Travin A, Shur M, Strelets M, et al. Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows[C]//Advances in LES of Complex Flows. Berlin: Springer, 2004: 239-254.
  • 4Haase W, Braza M, Revell A. DESider-A European effort on hybrid RANS-LES modeling[M]. Berlin: Springer, 2009: 19-139.
  • 5Menter F, Kuntz M. Adaption of eddy-viscosity turbulence models to unsteady separated flow behind vehicles. In: The aerodynamics of heavy vehicles: trucks, buses, and trains[C]//Lecture Notes in Applied and Computational Mechanics. Berlin: Springer, 2004.
  • 6Spalart P R, Deck S, Shur M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theory Computation Fluid Dynamics, 2006, 20(3): 181-195.
  • 7Nikitin N, Nicoud F, Wasistho B, et al. An approach to wall modeling in large-eddy simulations[J]. Physics of Fluids, 2000, 12(7): 1629-1632.
  • 8Shur M L, Spalart P R, Strelets M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638-1649.
  • 9Bui T T. A parallel, finite-volume algorithm for large-eddy simulation of turbulent flow[J]. Computers & Fluids, 2000, 29(8): 877-915.
  • 10Deng X B, Zhao X H, Yang W, et al. Dynamic adaptive upwind method and it's applications in RANS/LES hybrid simulations[C]//The Eighth International Conference on Computational Fluid dynamics. Mianyang: China Aerodynamics Research and Development Center, 2014: 807-814.

二级参考文献50

  • 1Spalart P R, Jou W H, Strelets M, et al. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach[A]. 1^st AFOESR Int Conf on DNS/LES[C]. In:Liu C, Liu Z Eds. Columbus,OH Greyden Press,1997.
  • 2Arnone A, Liou M S,Povinelli L A. Integration of Navier-Stokes equations using dual time stepping and a multigrid method[J]. AIAA Journal, 1995,33(6):985-990.
  • 3Spalart P R, Allmaras S R. A one-equation turbulence model for aerodynamic flows[R]. AIAA 92-0439,1992.
  • 4George B, Donald E. Examples of three representative types of airfoil-section stall at low speed[R]. NACA TN-2502, 1951.
  • 5Li D, Igor Men'shov, Nakamura Y. 2-D RANS simulation for three different stall types[A]. Proceedings of the Thirty-fifth Fluid Dynamics Conference of Japan[C]. Kyoto,Japan, 2003.
  • 6Jochem H, Peter E, Yaug X, Cheng ZM. Parallel multiblock structured grids. In: Thompson JF, Soni BK, Weatherill NP, editors. Handbook of grid generation. CRC Press; 1999 chapter 12.
  • 7Sebastien E. Numerical simulation and drag extraction using patched grid calculations. AIAA Paper 2003-1238; 2003.
  • 8Benek A, Buning PG, Steger JL. A 3-D Chimera grid embedding technique. AIAA Paper 1985-1523; 1985.
  • 9Weatherill NP. Unstructured grids: procedures and applications. In: Thompson JF, Soni BK, Weatherill NP, editors. Handbook of grid generation. CRC Press; 1999 chapter 26.
  • 10Baker TJ. Mesh generation: art or science? Prog Aerosp Sci 2005;41(1):29-63.

共引文献22

同被引文献72

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部