期刊文献+

一种基于Kriging和Monte Carlo的主动学习可靠度算法 被引量:19

An active learning reliability method based on Kriging and Monte Carlo
原文传递
导出
摘要 机械结构可靠性分析时,常常会采用代理模型拟合隐式功能函数来解决计算量大的问题,但由于试验设计方案需要同时考虑代理模型的拟合精度和可靠度计算精度的问题。因此,为了能够充分使用较少的样本信息,最大化可靠度计算精度,本文充分发挥Kriging预测的随机特性,提出一种主动学习可靠度计算方法。首先,类似于优化问题中改善函数的选点方式,提出一种基于Kriging预测的学习函数,基于Monte Carlo法生成大量的候选样本点,找出学习函数最小值对应的样本点作为最佳取样点。其次,推导和提出了一种学习停止的条件,保证了Monte Carlo样本点预测符号的正确性且学习次数明显减小。最后,通过2个数值算例分析结果表明,该算法相比其他方法需要更少的样本数量,得到的可靠度计算精度更高,验证了本文算法的正确性和高效性。 In structural reliability analysis, surrogate models are usually used to approximate implicit performance function in order to solve the problem of large computation. However, selection of the design of numerical experiments should consider the accuracy of fitting surrogate model and the precision of calculating reliability simultaneously. Therefore, in order to make full use of the few sample information as little as possible and to maximize the accuracy of reliability calculation, an active learning reliability calculation method is proposed. Firstly, a learning function based on Kriging prediction is proposed similar to the improved function determining the selection of point in the optimization problem. And the best sampling point corresponding to the minimum of learning function is selected from the Monte Carlo population, Secondly, an iterative stopping criterion is proposed to ensure the correctness of Monte Carlo sample points' sign, and the iterations decrease dramatically. Finally, the correctness and efficiency of the proposed method are proved by two academic examples from literature; it is shown that the proposed method requires fewer calls to the performance function than other methods and the failure probability obtained from the proposed method is more accurate.
出处 《航空学报》 EI CAS CSCD 北大核心 2015年第9期2992-3001,共10页 Acta Aeronautica et Astronautica Sinica
基金 国家科技重大专项(2013ZX04011-011)~~
关键词 可靠性 MONTE Carlo KRIGING模型 主动学习 失效概率 reliability Monte Carlo Kriging model active learning failure probability
  • 相关文献

参考文献19

  • 1Ditlevsen O, Madsen H O. Structural reliability methods[M]. New York: Wiley, 1996: 87-109.
  • 2Melchers R E. Structural reliability analysis and predictions[M]. New York: Wiley, 1999: 124-156.
  • 3Nowak A S, Collins K R. Reliability of structures[M]. Boston: McGraw-Hill, 2000: 32-35.
  • 4Jones D R, Schonlau M, Welch W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4): 455-492.
  • 5Huang D, Allen T T, Notz W I, et al. Global optimization of stochastic black-box systems via sequential kriging meta-models[J]. Journal of Global Optimization, 2006, 34(3): 441-466.
  • 6Ranjan P, Bingham D, Michailidis G. Sequential experiment design for contour estimation from complex computer codes[J]. Technometrics, 2008, 50(4): 527-541.
  • 7Bichon B J, Eldred M S, Swiler L P, et al. Efficient global reliability analysis for nonlinear implicit performance functions[J]. AIAA Journal, 2008, 46(10): 2459-2468.
  • 8徐家宽,白俊强,黄江涛,乔磊,董建鸿,雷武涛.考虑螺旋桨滑流影响的机翼气动优化设计[J].航空学报,2014,35(11):2910-2920. 被引量:38
  • 9昌敏,周洲,王睿.基于机翼-帆尾的高纬度跨年驻留太阳能飞机总体参数设计方法[J].航空学报,2014,35(6):1592-1603. 被引量:8
  • 10Echard B, Gayton N, Lemaire M. AK-MCS: An active learning reliability method combining Kriging and Monte Carlo simulation[J]. Structural Safety, 2011, 33(2): 145-154.

二级参考文献87

  • 1高阳,白广忱,张瑛莉.涡轮盘低循环疲劳寿命的概率分析[J].航空动力学报,2009,24(4):804-809. 被引量:19
  • 2杜德文,马淑珍,陈永良.地质统计学方法综述[J].世界地质,1995,14(4):79-84. 被引量:23
  • 3肖义龙,苏国韶.结构可靠度分析的高斯过程重要抽样方法[J].水力发电,2010,36(12):31-33. 被引量:1
  • 4傅惠民,刘成瑞.ε-N曲线和P-ε-N曲线整体推断方法[J].航空动力学报,2006,21(6):957-961. 被引量:12
  • 5纪震,廖惠连,吴青华.粒子群算法及应用[M].北京.科学出版社,2008:12-15.
  • 6Keys A C,Rees L P, Greenwood A G. Performance meas ures for selection of metamodels to be used in simulation optimization[J]. Decision Sciences, 2002,33 ( 1 ) : 31-57.
  • 7Krishnamurthy T. Comparison of response surface con struetion methods for derivative estimation using moving least squares,Kriging and radial basis functions[R]. AIAA 2005-1821,2005.
  • 8Gomes H M, Awruch A M. Comparison of response surface and neural network with other methods for structural reliability analysis[J]. Structural Safety, 2004,26 ( 1 ) :49-57.
  • 9Cherkassky V, Ma Y. Practical selection of SVM parame ters and noise estimation for SVM regression[J]. Neural Networks,2004,17(1):113-126.
  • 10Kaymaz I. Application of Kriging method to structural reliability prohlems[J]. Structural Safety, 2005, 27 ( 2 ) : 133- 151.

共引文献133

同被引文献120

引证文献19

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部