期刊文献+

空间机器人抓捕目标后姿态接管控制 被引量:10

Attitude takeover control after capture of target by a space robot
原文传递
导出
摘要 针对姿轨控系统已经失效的目标航天器姿态控制问题,提出一种空间机器人抓捕目标后姿态接管控制方法。该方法首先利用空间机器人抓捕目标航天器,并保持在固定构型形成组合航天器;其次确定参数突变后组合航天器新的惯量主轴、主惯量和控制力矩分配矩阵;然后在状态空间建立组合航天器的非线性误差姿态动力学;最后采用-α稳定度设计方法来设计服务航天器的SDRE姿态接管控制器,并通过θ-D求解方法得到SDRE控制器的次最优控制律,实现服务航天器对目标航天器的姿态接管控制。仿真结果表明,相比传统的SDRE控制器设计,基于-α稳定度设计的SDRE控制器能够使得系统闭环极点远离虚轴,θ-D求解方法可以降低计算量,因此具有更好的稳定性和实时性。 For the attitude control of target spacecraft whose attitude and orbit control systems have failed, a takeover control approach is proposed that the attitude is controlled after capture of target spacecraft by a space robot. Firstly, the space robot captures a target spacecraft and remains in a fixed configuration to form a combined spacecraft. Then, the new princi- pal axes of inertia, main inertia and allocation matrix of control torque of the combined spacecraft are determined due to the parameter mutation of the combined spacecraft. Furthermore, the attitude error dynamics of the combined spacecraft is established in the form of state space. Finally, the SDRE takeover controller is constructed based on the - α stability design for the service spacecraft, which is solved by the 8-D method to obtain the sub-optimal control law of SDRE controller and achieve the takeover control of target spacecraft attitude by the service spacecraft. Numerical simulations have demonstrated that compared with the traditional SDRE control, the SDRE controller based on the - α stability design can make the closed-loop poles of system away from the imaginary axis, and the 8-D solving method can reduce the computation burden, hence it has better stability and real-time performance.
出处 《航空学报》 EI CAS CSCD 北大核心 2015年第9期3165-3175,共11页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(11272256 61005062)~~
关键词 航天器 接管控制 姿态控制 空间机器人 目标抓捕 次最优控制 spacecraft takeover control attitude control space robot target capture sub-optimal contro
  • 相关文献

参考文献13

二级参考文献69

  • 1Xu W F, Liang B, Li B, et al. A universal on-orbit servicing system used in the geostationary orbit [ J ]. Advances in Space Research, 2011, 48(1): 95 -119.
  • 2Hirzinger G. ROTEX--the first space robot technology experiment [ J ]. Experimental Robotics III, 1994 : 579 - 598.
  • 3Martin E, Dupuis E, Piedboeuf J C, et al. The TECSAS mission from a Canadian perspective [ C ]. ISAIRAS 2005 Conference, Munich, Germany, September 2005.
  • 4Rupp T, Boge T, Kiehling R, et al. Flight dynamics challenges of the germen on-orbit servicing mission DEOS [ C]. 21st International Symposium on Space Flight Dynamics, Toulouse, France, Sep 28 - Oct 2, 2009.
  • 5Inaba N, Oda M. Autonomous satellite capture by a space robot- world first on-orbit experiment on a Japanese Robot Satellite ETS- VIII C]. International Conference on Robotics and Automation, San Francisco, USA, Apr 24 - 28, 2000.
  • 6Friend R B. Orbital Express program summary and mission overview [ C ]. Sensors and Systems for Space Applications, Orlando, FL, USA, Mar 17, 2008.
  • 7Obermark J, Creamer G, Kelm B E, et al. SUMO/FREND: vision system for autonomous satellite grapple [ C ]. Sensors and Systems for Space Applications, Orlando, FL, USA, Apr 9,2007.
  • 8Vafa Z, Dubowsky S. The kinematics and dynamics of space manipulators: the virtual manipulator approach [ J ]. The International Journal of Robotics Research, 1990, 9 (4) : 3 - 21.
  • 9Xu Y S, Kanade T. Space robotics: dynamics and control[ M ]. Dordrecht, Boston: Kluwer Aca-demic Publishers, 1992.
  • 10Nenchev D N, Yoshida K. Impact analysis and post-impact motion control issues of a free-floating space robot contacting a tumbling object [ C]. International Conference on Robotics and Automation, Leuven, Belgium, May 16-20 1998.

共引文献47

同被引文献100

  • 1王从庆,石宗坤,袁华.自由浮动空间双臂机器人的鲁棒协调控制[J].宇航学报,2005,26(4):436-440. 被引量:23
  • 2柳林,季秀才,郑志强.基于市场法及能力分类的多机器人任务分配方法[J].机器人,2006,28(3):337-343. 被引量:22
  • 3洪在地,贠超,陈力.柔性臂漂浮基空间机器人建模与轨迹跟踪控制[J].机器人,2007,29(1):92-96. 被引量:62
  • 4王滨,李家炜,刘宏.机器人多指手的优化抓取力计算[J].吉林大学学报(工学版),2008,38(1):178-182. 被引量:11
  • 5BENEDICT B L. Rationale for need of in-orbit servicing capabilities for GEO spacecraft: AIAA 2013-5444 [R]. Reston AIAA, 2013.
  • 6TANAKA H, YAMAMOTO N, YAIRI T, et al. Recon- l"igurable cellular satellites maintained by space robots[J]. Journal of Robotics and Mechatronics, 2006, 18(3) 356- 364.
  • 7TANAKA H, YAMAMOTO N, YAIRI T, et al. Precise assembly by autonomous space robot using skill acquisition learning[C]//Proceedings of The 8th International Sympo- sium on Arti{icial Intelligence, Robotics and Automation in Space. Munich: European Space Agency, 2005, 609-616.
  • 8JAEGER T, MIRCZAK W. Satlets-the building blocks of future satellites-and which mold do you use: AIAA-2013- 5485[R]. Reston AIAA, 2013.
  • 9JOHNSON L K, HOLLMAN J, MCCLELLAN J, et al. Utilizing CubeSat architecture and innovative low-com- plexity devices to repurpose decommissioned apertures for RF eommunieations AIAA-2013-5487 [ R ]. Reston: AIAA, 2013.
  • 10WEISE J, BRIEB K, ADOMEIT A, et al. An intelligent building blocks concept for on-orbit-satellite servicing[C]// International Symposium on Artificial Intelligence, Robot- ics and Automation in Space. Turin: European Space A- gency, 2012.

引证文献10

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部