期刊文献+

基于聚类算法的边缘点集连接方法

Curve reconstruction from scattered plane points using cruster algorithm
原文传递
导出
摘要 针对Lidar点云中轮廓点的连接问题,提出基于聚类(cruster)曲线重建原理进行点云边界连接的方法.首先将三维点云投影到二维平面上;对点云进行细化和约简处理;然后,构建约简后点云的Voronoi图,Voronoi图的顶点近似位于约简点云的中轴上;将中轴点与约简后点云合并在一起,再次进行Voronoi图划分;将新的Voronoi图中顶点包含中轴点的边删除,得到约简后二维点云的边缘轮廓,即简点云的Crust;最后将连接关系映射到三维点云,得到三维轮廓点的连接关系.实验表明,该方法简单,连接结果合理. For 3D Lidar points, how to connect the edge points should be a problem due to that the spatial relationship among points are more complex. In light of this problem, the cruster algorithm is introduced to reconstruct a curve for 2D points by estimating the middle axis of original points and performing Delau- nay triangulation for all original points and the vertices of middle axis. As the original cruster algorithm only fits the point sets sampled from single smooth curve; when the point sets have certain thickness or uneven thickness, the original cruster algorithm can not work well. However, this is original situation. Then, this paper is to perform thinning and simplification after projecting the 3D points to a 2D plane. Then, the cruster is applied to obtain the edges connecting these simplified points. Finally, the connection relationship between points is mapped to the 3D points. This algorithm is simple and effective.
出处 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2015年第5期723-726,733,共5页 Engineering Journal of Wuhan University
基金 国家自然科学基金项目(编号:41371426) 山西省测绘地理信息局测绘地理信息科技项目(编号:2013K2)
关键词 聚类(cruster)算法 边缘 中轴 VORONOI图 cruster algorithm edges middle axis Voronoi
  • 相关文献

参考文献12

  • 1刘增艺,江开勇,林俊义.散乱点云特征边缘交互提取[J].doi:10.3778/j.issn.1002-8331.1404-0070.
  • 2Taubin G,Rondfard R.Implicit simplicial models for adaptive curve reconstruction[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(3):321-325.
  • 3http://www.ics.uci.edu/-eppstein/gina/voronoi.html[EB/OL].
  • 4http://en.wikipedia.org/wiki/Delaunay_triangulation[EB/OL].
  • 5刘金义,刘爽.Voronoi图应用综述[J].工程图学学报,2004,25(2):125-132. 被引量:74
  • 6Amenta N,Bern M,Eppstein D.The crust and theβ-skeleton:Combinational curve reconstruction[J].Graphical Models and Image Processing,1998,60(2):125-135.
  • 7钟纲,杨勋年,汪国昭.基于场表示的平面无序点集曲线重建算法[J].计算机辅助设计与图形学学报,2002,14(11):1074-1079. 被引量:7
  • 8Lee I K.Curve reconstruction from unorganized points[J].Computer Aided Geometric Design,2000,17(2):161-177.
  • 9Edelsbrunner H,Kirkpatrick D G,Seidel R.On the shape of a set of points in the plane[J].IEEE Transactions on Information Theory,1983,29(4):551-559.
  • 10顾步云,周来水,刘胜兰,张维中.基于平面散乱点集的曲线重建算法[J].机械科学与技术,2007,26(4):455-458. 被引量:4

二级参考文献78

  • 1卫炜,张丽艳,周来水.一种快速搜索海量数据集K-近邻空间球算法[J].航空学报,2006,27(5):944-948. 被引量:11
  • 2[1]Varady T, Martin R R, Cox J. Reverse engineering of geometric models-An introduction[J]. Computer-Aided Design, 1997, 29(4):255~268
  • 3[2]Singh R, Cherkassky V, Papanikolopoulos N. Self-organizing maps for the skeletonization of sparse shapes[J]. IEEE Transactions on Neural Networks, 2000, 11 (1): 241~248
  • 4[3]Ye Q Z, Danielsson P E. Inspection of printed circuit boards by connectivity preserving shrinking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(5):737~742
  • 5[4]Korsters M. Curvature-dependent parameterization of curves and surfaces[J]. Computer-Aided Design, 1991, 23(8):569~578
  • 6[5]Yang X, Wang G. Planar point set fairing and fitting by arc splines[J]. Computer-Aided Design, 2001, 33(1):35~43
  • 7[6]Amenta N, Bern M, Eppstein D. The crust and the β-skeleton: Combinatorial curve reconstruction[J]. Graphical Models and Image Processing, 1998, 60(2):125~135
  • 8[7]Dey T K, Wenger R. Reconstructing curves with sharp corners[J]. Computational Geometry Theory and Applications, 2001, 19(2/3) :89~99
  • 9[8]Levin D. The approximation power of moving least-squares [J]. Mathematics of Computation, 1998, 67 (224): 1517~1531
  • 10[9]Lee I K. Curve reconstruction from unorganized points[J].Computer Aided Geometric Design, 2000, 17(2): 161~177

共引文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部