期刊文献+

基于渐进迭代逼近的等距曲线改进算法 被引量:1

An Improved Algorithm for Offset Curves Based on the Progressive-iteration Approximation
原文传递
导出
摘要 提出一种基于渐进迭代逼近的等距曲线改进算法.该改进算法利用曲线段的高控制采样误差,在充分反映基曲线的形状特征的前提下尽可能地减少采样点数量.在采样点中选取等距曲线上的特征点作为主控制点,利用渐进迭代逼近方法插值所选取的主控制点,迭代过程中综合考虑法矢和参数化一致性两个因素以更好地控制等距逼近曲线的形状.最后,同样利用曲线段的高控制逼近误差,以避免误差过估,对得到的逼近等距曲线的B样条曲线实现更精确的全局误差控制.给出一些实例来验证该改进算法在采样点数量、所需控制顶点个数、迭代次数、误差控制、等距逼近曲线的形状控制等方面实现了性能的提高. It proposes an improved algorithm for offset curve based on the progressive-iteration approximation. The improved algorithm controls the sampling error using the high of curve section. It could reduce the number of sample point as possible at the premise of reflecting the shape feature of the progenitor curve. Then the improved algorithm selects the characteristic points on the offset curve as the dominant points and interpolates the dominant points by using the progressive-iteration approximation, while taking into account of consistency of the normal vector and parameterization to control the shape of offset approximating curve better. Lastly, the algorithm controls the approximation error using the high of curve section to avoid overestimation the error. The B-spline curve approximating offset curve can achieve global error control. Some experimental results demonstrated the proposed algorithm can improve the performance in terms of controlling the number of sampling point, the number of control point, iteration times, error control, shape-control of offset curve.
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第5期12-20,共9页 Journal of Fujian Normal University:Natural Science Edition
基金 福建省自然科学基金资助项目(2010J01318)
关键词 切矢 等距线 B样条曲线 法矢 tangent vector offset curve B-spline curve normal vector
  • 相关文献

参考文献15

  • 1Cobb E S. Design of sculptured surfaces using the B-spline representation [ D ]. Salt Lake City: Univesity of Utah, 1984.
  • 2Coquillart S. Computing offsets of B-spline curves [ J]. Computer Aided Design, 1987, 19 (6) : 305 -309.
  • 3Tiller W, Hanson E G. Offsets of two-dimensional profiles [J]. IEEE Computer Graphics And Application, 1984, 4 (9) : 36 -46.
  • 4Elber G, Cohen E. Offset approximation improvement by control points perturbation [ C ] // Mathematical Methods in CAGD and Image Processing. New York: Academic Press, 1992:229-237.
  • 5刘利刚,王国瑾.基于控制顶点偏移的等距曲线最优逼近[J].软件学报,2002,13(3):398-403. 被引量:15
  • 6Klass R. An offset spline approximation for plane cubic splines [J]. Computer Aided Design, 1983, 15 (4) : 297 - 299.
  • 7Hosehek J. Spline approximation of offset curves [J]. Computer Aided Geometric Design, 1988, 20 (1) : 33 -40.
  • 8Pham B. Offset approximation of uniform B-splines [ J ]. Computer Aided Design, 1988, 20 (8) : 471 - 474.
  • 9Hoschek J, Wissel N. Optimal approximate conversion of spline curves and spline approximation of offset curves [ J ]. Computer Aided Design, 1988, 20 (8) : 475 -483.
  • 10Li Y M, Hsu V Y. Curve offsetting based on Legendre series [ J]. Computer Aided Geometric Design, 1998, 15 (7) : 711 -720.

二级参考文献2

  • 1沈燮昌.多项多最佳逼近的实现[M].上海:上海科学技术出版社,1984..
  • 2易大义 蒋叔豪 等.数值方法[M].杭州:浙江科学技术出版社,1988..

共引文献14

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部