期刊文献+

碳纳米管固定化酶 被引量:5

Enzyme Immobilized on Carbon Nanotubes
原文传递
导出
摘要 在固定化酶技术中,载体材料的选择至关重要,碳纳米管作为一种新型高效的酶固定化载体,具有较大的比表面积、有序的纳米孔道结构、良好的力学/电学/热学性能、突出的化学稳定性、生物相容性和可控的表面官能化修饰等优良特性,应用日益广泛。本文重点介绍了水解酶、氧化还原酶等具有重要工业应用价值的酶在碳纳米管上的固定化研究现状,探讨了载体的表面修饰和固定化方式对固定化酶的酶学性质的影响,并对碳纳米管固定化酶的发展前景进行了展望。 In the technology of enzyme immobilization, the choice of carrier material is very important for the catalytic performance of enzyme. As a new type of high efficient enzyme immobilization carrier with larger specific surface area, ordered nano pore structure, good mechanical/electrical/thermal performance, outstanding chemical stability, biocompatibility and controllable surface functional modifications, carbon nanotubes are used more and more extensively. The recent research progress of enzyme immobilization on carbon nanotubes is reviewed in this paper, focusing on the immobilization of hydrolases and oxido-reductases, which have important industrial application value. The influence of surface modification of carrier and immobilization methods on the catalytic properties of immobilized enzymes is introduced. The outlook of potential applications of enzyme immobilization on carbon nanotubes is also prospected.
出处 《化学进展》 SCIE CAS CSCD 北大核心 2015年第9期1251-1259,共9页 Progress in Chemistry
基金 国家高技术研究发展计划(No.2011AA02A209) 国家杰出青年科学基金项目(No.21225626)资助~~
关键词 碳纳米管 固定化 水解酶 氧化还原酶 carbon nanotubes immobilization enzyme hydrolase oxido-reductase
  • 相关文献

参考文献55

  • 1Kohler V, Tumer N J. Chem. Commun., 2015, 51(3): 450.
  • 2Reetz M T. J. Am. Chem. Soc., 2013, 135(34): 12480.
  • 3Zheng G W, Xu J H. Curr. Opin. Biotechnol., 2011, 22(6): 784.
  • 4DiCosimo R, McAuliffe J, Poulose A J, Bohlmann G. Chem. Soc. Rev., 2013, 42(15): 6437.
  • 5Sheldon R A, Sander V P. Chem. Soc. Rev., 2013, 42(15): 6223.
  • 6Carlsson N, Gustafsson H, Thorn C, Olsson L, Holmberg K, Akerman B. Adv. Colloid Interface Sci., 2014, 205: 339.
  • 7Zhou Z, Hartmann M. Chem. Soc. Rev., 2013, 42(9): 3894.
  • 8Min K, Yoo Y J. Biotechnol. Bioproc. Eng., 2014, 19(4): 553.
  • 9Mehra N K, Mishra V, Jain N K. Biomaterials, 2014, 35(4): 1267.
  • 10Valentini F, Carbone M, Palleschi G. Anal. Bioanal. Chem., 2013, 405(2/3): 451.

二级参考文献39

  • 1O'Fagain C. Enzyme stabilization--recent experimental progress. Enzyme Microb Technol, 2003, 33: 137-149.
  • 2Kamal JKA, Behere DV. Kinetic stabilities of soybean and horseradish peroxidases. Biochem Eng J, 2008, 38: 110-114.
  • 3Kim J, Grate JW, Wang P. Nanostructures for enzyme stabilization. Chem Eng Sci, 2006, 61: 1017-1026.
  • 4Kohda J, Kawanishi H, Suehara KI, et al. Stabilization of free and immobilized enzymes using hyperthermophilic chaperonin. J Biosci Bioeng, 2006, 101: 131-136.
  • 5Chawarski MC, Fiellin DA, O'Connor PG, et al. Utility of sweat patch testing for drug use monitoring in outpatient treatment for opiate dependence. J Subst Abuse Treat, 2007, 33:411-415.
  • 6Chattopadhyay K, Mazumdar S. Structural and conformational stability of horseradish peroxidase: effect of temperature and pH. Biochemistry, 2000, 39: 263-270.
  • 7Gasymov OK, Glasgow BJ. ANS fluorescence: Potential to augment the identification of the external binding sites of proteins. Biochim Biophys Acta, 2007, 1774:403-411.
  • 8Gajhede M, Schuller DJ, Henriksen A, et al. Crystal structure of horseradish peroxidase C at 2.15A resolution. Nature Struct Biol, 1997, 4: 1032-1038.
  • 9Wiggins PM. Hydrophobic hydration, hydrophobic forces and protein folding. Physica A, 1997, 238:113-128.
  • 10Baldwin RL. How Hofmeister ion interactions affect protein stability. Biophys J, 1996, 71: 2056-2063.

共引文献13

同被引文献35

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部