摘要
考虑拓展在Banach空间中无界线性算子的近似逆方案,需要重新改编从有界算子到无界算子的方案,就要预处理数据来适应数学模型,研究不变性和正则化属性需要建立分数阶微分模型,近似逆的方法适用于无界算子和Banach空间,提供特色重建使得扩展的概念在进入数字化模型之前就通过预处理或实际测量的数据的场景中,重建内核,整体反演算法的稳定性可以实现这些步骤,让得出的数值结果来确保提出方法和导出的一些性质。
Consider extends the unbounded linear operators scheme on Banach spaces, The principle of feature reconstruction is adopted from bounded operators to the unbounded scenario, in addition, a new situation is examined where the data need to be pre processed to fit into the mathematic model in all these cases. Invariance and requiarization propertios are surveyed and established for the example of fructional differentiation, Numerical resuits confirm the derived characteristics of the present methods.
出处
《宜春学院学报》
2015年第6期38-40,共3页
Journal of Yichun University
关键词
BANACH空间
近似逆
无界算子
有界算子
Banach Spaces
Approximate Inverse
Unbounded Operators
Bounded Operators