期刊文献+

图像压缩感知在分数阶Fourier域、分数阶余弦域的性能比较

The Performance Comparision of Image Compressed Sensing in Fractional Fourier Domain and Fractional Cosine Domain
下载PDF
导出
摘要 模拟信号的数字采样是模拟通向数字信息世界的纽带。本文基于图像信号在分数阶Fourier域(FRFT)、分数阶余弦域(FRCT)域具有稀疏性的特性,对灰度图像压缩感知在以上两种变换域的性能做了初步比较。本文采用正交匹配追踪法(OMP)重构原信号,采用局部哈达码矩阵作为测量矩阵,采用峰值信噪比(PSNR)和均方误差(MSE)作为客观评价标准。 Sampling is the bridge between analog source signal and digital signal. Based on image signal in the fractional Fourier domain (FRKF), fractional cosine domain (FRCT) with sparse features, this article makes a preliminary comparison of the performance of gray image compression perception in the above two kinds of transform domain. This article uses the method of orthogonal matching pursuit (OMP) to reconstruct the original signal, uses local hada code matrix as measurement matrix, and uses the peak signal-to-noise ratio (PSNR) and mean square error (MSE) as the objective evaluation standard.
出处 《职业技术》 2015年第8期101-104,共4页 Vocational Technology
关键词 压缩感知 分数阶FOURIER变换 分数阶余弦变换 稀疏表示 OMP compressed sensin FRFT FRCT sparse representation OMP
  • 相关文献

参考文献7

  • 1Donoho, D.L.Compressed sensing.IEEE Transactions on Information Theory[J]. 2006,52 (4): 1289-1306.
  • 2Cand e s ,E, Romberg J, Tao T.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information [J]. IEEE Translnfonnation Theory2006,52(4): 489-509.
  • 3Cand e s, J Romberg, Quantitative robustuncentainty principles and optimally sparsedecompositions[J]. Foundations of Comput Math, 2006, 6(2): 227-254.
  • 4Gand e s,T Tao.Near optimal signal recoveryfrom random projections:Universal encodingstrategies 2006(12).
  • 5石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 6齐林,陶然,周思永,王越.基于分数阶Fourier变换的多分量LFM信号的检测和参数估计[J].中国科学(E辑),2003,33(8):749-759. 被引量:175
  • 7Soo-Chang Pei,Jian-Jiun Ding.Fractional, canonical, and simplified fractional cosine transforms [J].Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP '01). 2001 IEEE International Conference.

二级参考文献103

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献884

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部