期刊文献+

翼伞发电系统的GPU并行轨迹优化

GPU based trajectory parallel optimization of tethered airfoils for wind energy generator
下载PDF
导出
摘要 高空风能发电是一种新型的清洁能源生产方式。针对这种非常规的带有特定目标函数优化的轨迹设计问题,采用预测控制是一条可行途径,但该方法目前需要事先离线求解,计算量极大,不具有在线自适应能力。提出了一种基于混沌的实时轨迹优化策略,以克服上述算法的不足。这是一维变量滚动次优化问题,利用均匀采样结合混沌搜索,给出了过程约束下的优化方法。通过采用数值算法的并行化,提高了在线计算效率。半实物仿真试验结果说明了该算法的有效性。 Wind energy at high altitudes is a new approach to generate clean energy. The predictive con-trol in the offline manner was previously employed to handle the problem of trajectory design with uncon-cventionally given objective function, however it is time-consuming and lacks of adaptability and flexibil-ity to varying aerodynamic parameters. A receding horizon optimization method for the tethered foil gener-ator based on an online searching strategy was presented. The nonlinear optimization problem was approx-imately reformulated to a univariate receding horizon sub-optimal issue in a short interval. By using uni-form sampling and chaotic search approaches, the sub-optimal solution, subject to the physical con-straints, was obtained. The proposed method is parallelly implemented by graphic processing unit ( GPU) to raise its online calculation efficiency. The hardware-in-the-loop simulation result demonstrates its effec-tiveness.
出处 《电机与控制学报》 EI CSCD 北大核心 2015年第8期88-94,共7页 Electric Machines and Control
基金 国家自然科学基金(61174094 61273138) 教育部优秀新世纪人才支持计划研究项目(NCET-10-0506)
关键词 翼伞发电系统 轨迹优化 滚动时域 混沌 图像处理器 并行计算 GRAPHICAL processing unit ( GPU) tethered airfoil for wind energy generator trajectory optimization receding horizon chaos parallel computation
  • 相关文献

参考文献17

  • 1张宏宇,印永华,申洪,何剑,赵珊珊.大规模风电接入后的系统调峰充裕性评估[J].中国电机工程学报,2011,31(22):26-31. 被引量:130
  • 2THRESHER R, ROBINSON M, Veers P. To capture the wind [ J ]. IEEE Power Energy Magazine, 2007, 5 (6) : 34 - 46.
  • 3CANALE M, FAGIANO L, Milanese M. Power kites for wind en- ergy generation-fast predictive control of tethered airfoils [ J ]. IEEE Control System Magazine, 2007, 27(6) : 25 -38.
  • 4CUTLER C R, RAMAKER B L. Dynamic matrix control-a com- puter control algorithm [ C ]//The Joint Automatic Control Confer- ence, San Francisco, USA, 1980.
  • 5ROUHANI R, MEHRA R K. Model algorithmic control (MAC) : basic theoretical properties [ J ]. Automatiea, 1982, 18 (4) : 401 -414.
  • 6CLARKE D W, MOHTADI C, TUFFS P S. Generalized predictive control[J]. Automatica, 1987, 23(2): 137-160.
  • 7MORARI M, LEE J H. Model predictive control: past, present and future [ J ]. Computers & Chemical Engineering, 1999, 23 (4 - 5 ) : 667 - 682.
  • 8QIN S J, BADGWELL T A. A survey of industrial model predic- tive control technology [ J ]. Control Engineering Practice, 2003, 11(7) : 733 -764.
  • 9HENSON M A. Nonlinear model predictive control: current status and future directions [ J ]. Computers & Chemical Engineering, 1998, 23(2) : 187 -202.
  • 10席裕庚,李德伟.预测控制定性综合理论的基本思路和研究现状[J].自动化学报,2008,34(10):1225-1234. 被引量:113

二级参考文献99

  • 1刘斌,席裕庚.基于集结策略的非线性稳定预测控制器[J].控制与决策,2004,19(11):1232-1236. 被引量:1
  • 2吴义纯,丁明.基于蒙特卡罗仿真的风力发电系统可靠性评价[J].电力自动化设备,2004,24(12):70-73. 被引量:90
  • 3李德伟,席裕庚,秦辉.预测控制等效集结优化策略的研究[J].自动化学报,2007,33(3):302-308. 被引量:15
  • 4曹昉,张粒子.结合系统调峰容量比确定抽水蓄能机组装机容量的方法[J].电力自动化设备,2007,27(6):47-50. 被引量:24
  • 5玄光男 程润伟.遗传算法与工程设计[M].北京:科学出版社,2000..
  • 6MAYNEA D Q, RAWLINGSB J B, RAOB C V, et al. Constrained model predictive control: Stability and optimality[J]. Automatica, 2000, 36(6): 789 - 814.
  • 7KENNEDY J, EBERHART R C. Particle swarm optimization[C] //Proceeding of IEEE International Conference on Neural Networks. Piscataway, NJ: IEEE Press, 1995:1942 - 1948.
  • 8RAY T, LIEW K M. A swarm with an effective information sharing mechanism for unconstrained and constrained single objective optimization problems[C]//Proceeding of IEEE International Conference on Evolutionary Computation. Piscataway, NJ: IEEE Press, 2001, 1:75-80.
  • 9LOVBJERG M, KRINK T. Extending particle swarms with self- organized criticality[C] //Proceeding of the 4th Congress on Evolutionary Computation. Washington, DC: IEEE Computer Society, 2002, 2:1588 - 1593.
  • 10KRINK T, VESTERSTROM J S, R/GET J. Particle swarm optimization with spatial particle extension[C]//Proceeding of the 4th Congress on Evolutionary Computation. Washington, DC: IEEE Computer Society, 2002, 2:1474 - 1479.

共引文献263

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部