期刊文献+

大规模复杂网络下重叠社区的识别 被引量:3

The Identification of Overlapping Communities in Large-Scale Complex Networks
下载PDF
导出
摘要 随着网络规模的不断扩大,经典的复杂网络重叠社识别算法已不能高效处理现有的大规模网络图数据.本文在GraphLab并行计算模型上提出了基于重要节点扩展的重叠社区识别算法DOCVN(Detecting the Overlapping Community algorithm based on Vital Node Expanding in GraphLab).算法选取网络中PageRank值大的节点作为重要节点,计算其他节点归属于重要节点的节点归属度,并以重要节点为中心形成核心社区及扩展社区,最后根据重要节点间的连接紧密度合并核心社区及扩展社区,并计算出每个节点在所属社区里的节点重要度,实现了大规模网络的重叠社区识别.实验表明该算法与PD(Propinquity Dynamics)等现有并行算法相比更能有效地识别大规模网络的重叠社区结构. With the unceasing expanding of network scale, many classic detection algorithms of overlapping communities cannot work efficiently in large-scale complex network. Detecting the overlapping community algorithm based on vital node expanding in parallel framework GraphLab (DOCVN) is introduced to identify the overlapping communities. In this algorithm, nodes with high PageRank value are regarded as vital nodes, and then the affiliation degree of other nodes to these vital nodes are computed. After that, kernel communities and expanding communities are identified respectively. Finally, the kernel communities and expanding communities are combined into some overlapping communities by judging whether they connect tightly. And the importance weight of each node in its community is also computed. Experimental results show that the algorithm is more effective than the existing parallel algorithms like PD (Propinquity Dynamics ) to identify large-scale overlapping communities.
出处 《电子学报》 EI CAS CSCD 北大核心 2015年第8期1575-1582,共8页 Acta Electronica Sinica
基金 国家自然科学基金(No.61472194) 浙江省自然科学基金(No.LY13F020040) 宁波市自然科学基金(No.2013A610063 No.2014A610023)
关键词 大规模复杂网络 GraphLab 重叠社区识别 社会网络 核心社区 largescale complex network GraphLab overlapping community identification social network kernel community
  • 相关文献

参考文献14

  • 1Newman M E J, Gil"van M. Finding and evaluating community structure in networks[ J]. Physical Review E, 2004,69: 026113.
  • 2Clauset A.Finding local community structure in networks[ J]. Physical Review E,2005,72:026132.
  • 3王庚.基于标签传播的稳定重叠社区挖掘算法研究[D].山东:山东建筑大学,2013.
  • 4Lancichinetfi A, Forttmato S, Kertesz J.Detecting the overlap- ing and hierarchical community structure in complex networks [ J]. New Journal of Physics, 2009,11 : 033015.
  • 5Zhang Y, Wang J, Wang Y, et al. Parallel community detection on large networks with Propinquity dynamics[A]. Proceedings of the 15th ACM SIGKDD International Conference on Knowl- edge Discovery and Data Mining[ C]. Pairs: ACM, 2009.997- 1006.
  • 6J Shi, W Xue, W Wang, Y 2]mng, et al. Scalable community detection in massive social networks using MapReduce [J ]. IBM,J RES & DEV,2013,57(3):3- 14.
  • 7A Clauset,Newman M E J,et al. Finding community structure in very large networks [ J ]. Physical Review E, 2004, 70: 066111.
  • 8J Riedy, D A Bader, H Meyerhenke. Scalable multi-threaded community detection in social networks [ A ]. Proceedings of IF.EF, International Conference on Tools with Artificial Intelli- gence[ C]. Seoul, Korea: I1,1,1,, 2012. 1619 - 1628.
  • 9F Niu, BRecht, S J Wright, et al. Hogwild [:A Lock-free Appoach to Parallelizing Stochastic Gradient Descent [ DB/ OL]. Available: http://books, nips. cc/papers/fries/nips24/ NIPS2011 _ 0485. pdf,2011.
  • 10Bryan K, Leise T.The $ 25 000 000 000 eigenvector:the lin- ear algebra behind Google [ J]. SIAM Rev, 2006,48 ( 3 ) : 569 - 581.

同被引文献11

引证文献3

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部