期刊文献+

BP神经网络与符号时间序列下的金融波动研究

Forecasting Financial Volatility Based on BP Neural Network and Symbolic Time Series
下载PDF
导出
摘要 针对金融市场的非线性特征,将BP神经网络与符号时间序列分析方法相结合,利用历史数据对金融波动进行预测。采用上证综指2011—2014年间隔为5 min的高频数据为样本,首先将波动序列符号化,然后利用BP神经网络对样本进行训练和检验,检验结果表明,该方法可有效预测下一时点波动变化情况,达到了其在金融波动方面的预测效果。 According to the nonlinear characteristics of the financial market, a new method of BP neural network combined with symbolic time series analysis was put forward to forecast financial volatility. High frequency data whose sampling intervals were 5 minutes from Shanghai Stock Exchange Composite Index from 2011 to 2014 was used as a sample. Firstly, the volatility series need to be symbolized. Then BP neural network was used to train and test the samples. Finally the symbol value of next time point was effectively predicted. The effect of the method of forecasting financial volatility was proved.
作者 徐梅 王方
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2015年第4期456-460,共5页 Journal of Wuhan University of Technology:Information & Management Engineering
基金 国家自然科学基金资助项目(70971097)
关键词 BP神经网络 金融波动 符号时间序列 BP neural network financial volatility symbolic time series
  • 相关文献

参考文献6

  • 1涂晔,车文刚.BP神经网络在福利彩票预测中的应用[C]//国际信息技术与应用论坛论文集.济南:[s.n. ] ,2009:243 - 246.
  • 2BRIDA J G,PUNZO L F. Symbolic time series analysisand dynamic regimes [ J] . Structural Change and Eco-nomic Dynamics,2003,14 (2) : 159 - 183 .
  • 3向馗,蒋静坪.时间序列的符号化方法研究[J].模式识别与人工智能,2007,20(2):154-161. 被引量:23
  • 4ANDERSON T G, BOLLERSLEV T, DIEBOLD F X,et al. Exchange rate returns standardized by realizedvolatility are ( nearly) gaussian [ J]. Multinational Fi-nance Journal ,2000,4(3/4) :159 -179.
  • 5郭名媛,张世英.基于“已实现”波动的协同持续研究及其应用[J].系统工程理论与实践,2006,26(5):30-35. 被引量:9
  • 6HORNIK K,STINCHGOMBE M,WHITE H. Multilayerfeedforward networks are universal approximators [ J].Neural Networks, 1989,2(5) :359 -366.

二级参考文献17

  • 1LI Han-dong, ZHANG Shi-ying School of Management, Tianjin University, Tianjin 300072, China.Common Persistence and Error-Correction Mode in Conditional Variance[J].Journal of Systems Science and Systems Engineering,2001,13(3):257-264. 被引量:15
  • 2Tang X Z, Tracy E R, Boozer A D, et al. Symbol Sequence Statistics in Noisy Chaotic Signal Reconstruction. Physical Review E, 1995, 51(5):3871-3889
  • 3Shalizi C R, Crutchfield J P. Computational Mechanics: Pattern and Prediction, Structure and Simplicity. Journal of Statistical Physics, 2001, 104(3/4): 817-879
  • 4Lin J, Keogh E, Loncell S, et al. A Symbolic Representation of Time Series, with Implications for Streaming Algorithms // Proc of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery. San Diego, USA, 2003:2-11
  • 5Ray A. Symbolic Dynamic Analysis of Complex Systems for Anomaly Detection. Signal Processing, 2004, 84(7): 1115-1130
  • 6Chin S C. Real Time Anomaly Detection in Complex Dynamic Systems. Ph. D Dissertation. Park, USA:The Pennsylvania State University. Depatment of Electrical Engineering, 2004
  • 7Crutchfield J P. The Calculi of Emergence: Computation, Dynamics and Induction. Physica D, 1994, 75(1/2/3):11-54
  • 8Crutchfield J P, Young K. Inferring Statistical Complexity. Physical Review Letters, 1989, 63(2):105-108
  • 9Perry N, Binder P M. Finite Statistical Complexity for Sofic Systems. Physical Review E, 1999, 60(1): 459-463
  • 10Hyndman R J. Time Series Data Library [DB/OL]. [2006-04-06]. http://www-personal.buseco.monash.edu. au/~hyndman/TSDL

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部