期刊文献+

基于分层深度学习的鲁棒行人分类 被引量:4

Robust Pedestrian Classification Based on Hierarchical Deep Learning
下载PDF
导出
摘要 针对行人分类中常见的光照条件、形体变化以及遮挡等多种因素,对特征提取过程造成了很大的阻碍。本文提出一种基于稀疏编码的分层特征提取方法。该方法采用前向预测函数训练最优的稀疏编码,在深度卷积网络模型的框架下以卷积预测稀疏分解算法(CPSD)分别对两层模型进行无监督学习,将两层的特征融合起来,最后采用支持向量机算法实现行人分类。实验结果表明,该文特征学习方法对行人分类的有效性,对比同类方法性能有明显提升。 In pedestrian classification, there are many factors, such as light changes, posture changes and occlusion problems etc, which brings many difficulties for feature extraction process. A hierarchical feature method is put forward based on sparse coding. The method trains optimal sparse coding with forward prediction function, and then learns the two levels networks one by one in unsupervised manner with Convolution Predictive Sparse Decomposition algorithm (CPSD) under framework of the deep convolution network model. Then we make the feature fusion. Finally, we implement classification with SVM algorithm. Experimental results demonstrate the effectiveness of our method for pedestrian classification, which has significant performance improvement compared with similar methods.
出处 《光电工程》 CAS CSCD 北大核心 2015年第9期21-27,共7页 Opto-Electronic Engineering
基金 国家自然科学基金项目(61471154) 中国博士后基金面上项目(2013M531504) 教育部留学回国人员科研启动基金资助项目
关键词 目标识别 深度学习 无监督学习 非线性处理 稀疏编码 object recognition deep learning unsupervised learning nonlinear processing sparse coding
  • 相关文献

参考文献15

  • 1Dollar P, Tu Z, Perona P, et al. Integral Channel Features [C]/! British Machine Vision Conference BMVC 2009, London, UK, Sep7-10, 2009, 2(3): 5.
  • 2苏松志,李绍滋,陈淑媛,蔡国榕,吴云东.行人检测技术综述[J].电子学报,2012,40(4):814-820. 被引量:159
  • 3Felzenszwalb P F, Girshick R B, McAllester D, et al, Object detection with discriminatively trained part-based models [J]. Pattern Analysis and Machine Intelligence(S0162-8828), 2010, 32(9): 1627-1645.
  • 4Maji S, Berg A C, Malik J. Efficient classification for additive kernel SVMs [J]. Pattern Analysis and Machine Intelligence(S0162-8828), 2013, 35(1): 66-77.
  • 5Dollfir P, Appel R, Kienzle W, et al. Crosstalk cascades for frame-rate pedestrian detection [C]// Computer Vision-ECCV, Springer Berlin Heidelberg, 2012: 645-659.
  • 6Abdel-hamid O, Mohamed A, JIANG Hui, et al. Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition [C]//2012 IEEE International Conference on, Kyoto, March 25-30, 2012: 4277-4280.
  • 7Hinton G E, Osindero S, Teh Y W, et al. A fast learning algorithm for deep belief nets [J]. Neural computation(S0899-7667), 2006, 18(7): 1527-1554.
  • 8HintonGE, SaakhutdinvRR.Reducingthedimensinaityfdatawithneuranetwrks[J].Siene(S36-875) 2006, 313(5786): 504-507.
  • 9Bengio Y, Lamblin P, Popovici D, et al. Greedy layer-wise training of deep networks [J]. Advances in Neural Information Proeessing Systems(S1049-5258), 2007, 19: 153.
  • 10Vidya R, Nasira G M, Priyankka R E Sparse Coding: A Deep Learning using Unlabeled Data for High-Level Representation [C]// Computing and Communication Technologies, Trichirappalli, Feb 27-March 1, 2014: 124-127.

二级参考文献58

  • 1贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 2杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 3Geronimo D, Lopez A, Sappa A, et al. Survey of pedestrian de- tection for advanced driver assistance systems[ J]. IEEE, Trans. on Pattern Analysis and Machine Intelligence, 2010, 32 ( 7 ) : 1239- 1258.
  • 4Dollfr P,Wojek C,Schiele B,et al. Pedestrian detection:an e- valuation of the state of the art.IEEE, Trans. on Pattern Analysis and Machine InteUigence,2011,99:1 - 20.
  • 5Aggarwal J, Ryoo M. Human activity analysis: a review[J]. ACM Computing Surveys,2011,43(3),16:1-47.
  • 6Reilly V, Solmaz B, and Shah M. Geometric constraints for hu- man detection in aerial hnagery[ A] .In Proc. ECCV[C] ,2010.
  • 7Andfiluka M, Schnitzspan P, Meyer J, et al. Vision based victim detection from unmanned aerial vehicles [ A ]. In Proc. IEEE/ RSJ International Conference on Intelligent Robots and Systems (IROS) [ C]. Talpei, Taiwan, 2010.
  • 8Dollar P, Belongie S, Pemna P. The fastest pedeslrian detector in the west[A]. In Proc. BMVC[C] ,2010.
  • 9Enzweiler M, Gavrila D. Monocular pedestrian detection: sur- vey and experiments[ J]. IEEE, Trans. on Pattern Analysis and Machine Intelligence, 2009,31 (12) :2179 - 2195.
  • 10Dalai N, Tdggs B. I-listograms of oriented gradients for human detection[ A]. In Proc. 1EEE CVPR[ C], 2005,886 - 893.

共引文献173

同被引文献29

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部