期刊文献+

低秩分解的人脸图像光照均衡化预处理 被引量:3

Illumination Equalization Preprocessing for Face Image Based on Low Rank Decomposition
下载PDF
导出
摘要 针对基于分割的遮挡人脸识别对光照不均衡敏感的问题,提出了一种低秩分解的人脸图像光照均衡化预处理方法。首先,基于人脸图像具有的左右对称性,得到一组扩展的测试人脸图像;然后,由矢量化的扩展测试人脸图像构成矩阵,并通过低秩矩阵分解技术提取出光照均衡化处理后的测试人脸图像用于后续的识别。基于AR库的仿真实验结果初步验证了:本文方法对于改进具有左右对称特征的人脸遮挡区域检测,有效提升识别系统的性能有明显效果。 Aiming to address the problem that segmentation based face recognition is sensitive to illumination imbalance, an illumination equalization preprocessing for face image is proposed. Firstly, a set of extended test images are generated by considering the fact that the face image has symmetry. Then, the extended test face images are vectorized to concatenate a matrix, from which the illumination equalized test face image is extracted by low rank decomposition technique for the following recognition. Simulation experimental results based on AR database primarily demonstrate that the proposed method could efficiently improve the pertbrmance of detecting the bilateral symmetry occlusion of face, and thus promote recognition rate considerably
出处 《光电工程》 CAS CSCD 北大核心 2015年第9期28-34,共7页 Opto-Electronic Engineering
基金 国家自然科学基金(61471400 61201268) 湖北省自然科学基金(2013CFC118 2013CFB448) 中央高校基本科研业务费专项(CZW14018)
关键词 人脸识别 连续遮挡 图像分割 光照均衡化 低秩分解 face recognition continuous occlusion image segmentation illumination equalization low rank decomposition
  • 相关文献

参考文献1

二级参考文献16

  • 1Turk M A, Pentland A P. Face recognition using eigenfaces. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Maui, 1991. 586-591.
  • 2Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Patt Anal Mach Intell, 1997, 19: 711-720.
  • 3Oh H J, Lee K M, Lee S U. Occlusion invariant face recognition using selective local non-negative matrix factorization basis images. Image Vision Comput, 2008, 26: 1515-1523.
  • 4Jia H, Martinez A M. Face recognition with occlusion in the training and testing sets. In: Proceedings of the IEEE International Conference on Automatic Face & Gesture Recognition, Amsterdam, 2008. 1-6.
  • 5He R, Zheng W, Hu B. Maximum correntropy criterion for robust face recognition. IEEE Trans Patt Anal Mach Intell,2011, 33: 1561-1576.
  • 6He R, Hu B, Zheng W, et al. Two-stage sparse representation for robust recognition on large-scale database. In: Proceedings of 24th AAAI Conference on Artificial Intelligence, Atlanta, 2010. 475-480.
  • 7Yang M, Zhang L. Gabor feature based sparse representation for face recognition with gabor occlusion dictionary. In: Proceedings of the 11th European Conference on Computer Vision. Berlin/Heidelberg: Springer-Verlag, 2010. 448-461.
  • 8Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation. IEEE Trans Patt Anal Mach Intell, 2008, 31: 210-227.
  • 9Candès E J, Wakin M B. An introduction to compressive sampling. IEEE Signal Process Mag, 2008, 25: 21-30.
  • 10Candès E J, Romberg J. l1-magic: recovery of sparse signals via convex programming. 2005. http://www.acm.caltech. edu/l1magic/downloads/l1magic.pdf.

共引文献4

同被引文献25

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部