期刊文献+

基于集群性特征的异常行为检测 被引量:2

Abnormal Behavior Detection Based on Collectiveness Feature
下载PDF
导出
摘要 在异常行为检测中,群体行为难以描述。针对该情况,提出了一种基于个体与群体中其他个体的行为相似性(集群性特征)的异常行为检测方法。该方法首先采用混合高斯模型提取出视频的背景;然后,使用KLT(Kanade–Lucas–Tomasi)算法追踪运动人群;接着,从群体的运动方向和速度两个角度提取出集群性特征;最后,利用集群性特征直方图描述行为,计算直方图的熵值来判断行为的异常。基于不同场景下的视频序列所进行的测试结果验证了所提方法的有效性。 Among the abnormal behavior detection methods, it is difficult to describe the crowd behavior. For this case, an abnormal behavior detection approach based on behavioral similarity (collectiveness features) between individual and other individuals in the group is proposed. Firstly, Gaussians mixture model was used to extract the background of the video. Then, Kanade-Lucas-Tomasi (KLT) algorithm was used to track the moving crowd. Next, collectiveness features integrated the motion information of the whole crowd are extracted from the direction and speed of the crowd movement. Finally, a histogram derived from the collectiveness features was defined to measure the anomaly of crowd activity, and the entropy of the histogram was computed to recognize abnormal events. Experiments were conducted on various video datasets, and results were presented to verify the effectiveness of the proposed scheme
出处 《光电工程》 CAS CSCD 北大核心 2015年第9期35-40,47,共7页 Opto-Electronic Engineering
基金 国家自然科学基金(61175026) 科技部国际科技合作专项(2013DFG12810) 宁波市自然科学基金(2014A610031 2014A610032) 宁波大学胡岚博士基金(ZX2013000319) 宁波大学人才工程项目(20111537)
关键词 异常行为检测 集群性特征 直方图 abnormal behavior detection collectiveness features histogram
  • 相关文献

参考文献12

  • 1崔永艳,高阳.基于多示例学习的异常行为检测方法[J].模式识别与人工智能,2011,24(6):862-868. 被引量:11
  • 2Jacinto Nascimento, Jorge Marques, Joao Lemos. Modeling and classifying human activities from trajectories using a class of space-varying parametric motion fields [J]. Image Processing(S1057-7149) , 2013, 22(5): 2066-2080.
  • 3Mehran R, Oyama A, Shah M. Abnormal crowd behavior detection using social force model [C]// Computer Vision and Pattern Recognition, Miami, FL, June20-25, 2009, 7065: 935-942.
  • 4Ihaddadene N, Djeraba C. Real-time crowd motion analysis [C]// Pattern Recognition, Tampa, FL, Dec 8-11, 2008, 12: 1-4.
  • 5ZHOU Bolei, TANG Xiaoou, WANG Xiaogang. Measuring crowd collectiveness [C]// Computer Vision and Pattern Recognition, Portland, OR, June23-28, 2013, 392: 3049-3056.
  • 6Tomasi C, Kanade T. Detection and tracking of point features [M]. Carnegie Mellon University, 1991:91-132.
  • 7Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking [C]// Proceeding of Computer Vision and Pattern Recognition, Fort Collins, June 23-25, 1999, 2: 246-252.
  • 8Freeman W T, Roth M. Orientation histograms for hand gesture recognition [C]// International Workshop on Automatic Face and Gesture Recognition, 1995, 12: 296-301.
  • 9Unusual crowd activity dataset of University of Minnesota [OL]. http: //mha.cs.umn.edu/movies/crowdactivity-all.avi.
  • 10杜鉴豪,许力.基于区域光流特征的异常行为检测[J].浙江大学学报(工学版),2011,45(7):1161-1166. 被引量:20

二级参考文献23

  • 1钟诚,罗程.无监督异常检测的核聚类和序列分析方法[J].计算机研究与发展,2008,45(z1):326-331. 被引量:5
  • 2彭新光,靳燕.短序列频度模式分类异常检测[J].计算机研究与发展,2007,44(z2):286-290. 被引量:1
  • 3卢鋆,吴忠望,王宇,卢昱.基于kNN算法的异常行为检测方法研究[J].计算机工程,2007,33(7):133-134. 被引量:13
  • 4POPPE R. Vision-based human motion analysis: an overview [J]. Computer Vision and Image Understanding, 2007, 104(2): 4 -18.
  • 5MITRA S, ACHARYA T. Gesture recognition: a survey [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2007, 37(3): 311- 324.
  • 6MECOCCI A, PANNOZZO M. A completely autonomous system that learns anomalous movements in advanced videosurveillance applications [C] /// 1EEE International Conference on Image Processing. London: IEEE, 2005:II-586 - 589.
  • 7CALDERARA S, CUCCHIARA R, PRATI A. Detection of abnormal behaviors using a mixture of Von Mises distributions [C]//IEEE Conference on Advanced Video and Signal Based Surveillanee. London: IEEE, 2007: 141- 146.
  • 8BOUTTEFROY P I. M, BOUZERDOUM A, PHUNG S L, et al. Abnormal behavior detection using a multi-modal stochastic learning approach [C]// International Conference on Intelligent Sensors, Sensor Networks and Information Processing. Sydney: IEEE, 2008: 121- 126.
  • 9TEHRANI M A, KLEIHORST R, MEIJER P, et al. Abnormal motion detection in a real time smart camera systern [C]//3rd ACM/IEEE International Conference on Distributed Smart Cameras. Como: IEEE, 2009: 1- 7.
  • 10DATTA A, SHAH M, I.()B() N D V. Person on-per son violence detection in video data [C] // Proceedings of the 16th International Conference on Pattern Recognition. Quebec City: IEEE, 2002:433-438.

共引文献29

同被引文献10

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部