期刊文献+

金纳米棒复合结构中的双重法诺共振效应

Effect of the Double Fano Resonances in the Gold Nanorod Composite Structure
下载PDF
导出
摘要 应用时域有限差分法(FDTD)模拟计算了由金纳米棒和偶极纳米天线构成的复合结构的消光光谱、近场增强和电荷分布。研究结果表明,在金纳米棒复合结构中能够产生双重法诺共振效应现象,并且在不同的法诺共振光谱位置处,能在不同的偶极纳米天线中产生很强的电磁场增强。此外,通过改变纳米棒复合结构中偶极纳米天线与金纳米棒的间距,以及偶极纳米天线中纳米棒的间距和长度大小,可以对法诺共振的调制深度和光谱位置进行大范围调谐。这些结果为理解金纳米棒复合结构中法诺共振效应的光学性质及纳米棒间的耦合作用提供了帮助,将金纳米棒复合结构用于微纳电子器件的优化设计,以满足其在光信息控制处理、多波段生物传感及表面增强喇曼散射等方面的应用。 The extinction spectrum,near-field enhancement and charge distributions of the composite structure composed of the gold nanorod and dipole nanoantennas were calculated by the finite-difference time-domain method(FDTD).The research results show that the effect of double Fano resonances can generate in the gold nanorod composite structure.The electromagnetic field enhancements can produce in different dipole nanoantennas with different Fano resonances spectrum positions.In addition,the modulation depth and spectrum position of the Fano resonances can be largely tuned by modifying the spacing between dipole nanoantennas and gold nanorod in the nanorod composite structure,as well as the gap size and length of the nanorods in the dipole nanoantenna.These results will provide help for understanding the optical properties of Fano resonance effect and the coupling between the nanorods in the composite structure,and the gold nanorod composite structure can be used for the optimal design of the micro-nano electronic devices to meet the demands of applications in controlling and processing optical information,multiwavelength biosensor and surface-enhanced Raman scattering.
出处 《微纳电子技术》 CAS 北大核心 2015年第9期559-564,共6页 Micronanoelectronic Technology
关键词 局域表面等离激元共振 金纳米棒复合结构 时域有限差分(FDTD)法 法诺共振 电磁场增强 localized surface plasmonic resonance gold nanorod composite structure finite-difference time-domain(FDTD)method Fano resonance electromagnetic field enhancement
  • 相关文献

参考文献22

  • 1KELI,Y K L, CORONADO E, ZHAO L L, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment [J]. J Phys Chem: B, 2003, 11)7 (3) : 668 - 677.
  • 2倪祖高,马文英,姚军,陈科帆.纳米柱阵列传感器的结构优化设计[J].微纳电子技术,2010,47(12):781-786. 被引量:2
  • 3MARTIN-MORENO L, GARCIA-VIDAL F J, I.EZEC H J, et al. Theory of extraordinary optical transmission through subwavelength hole arrays[J]. Phys Rev l.ett, 211(11. 86 (6): 1114-1117.
  • 4高征,白一鸣,吴强,辛雅焜,何海洋,刘海,丁希宏,吴云召,王志斌,于晓琳,吕小颖,汪鼎民,陈诺夫.纳米颗粒表面等离激元在太阳电池中的应用[J].微纳电子技术,2013,50(9):551-558. 被引量:2
  • 5MUHLSCHLEGEL P, EISLER H J, MARTIN O J F, et al. Resonant optical antennas [J]. Science, 2005, 3118 (6): 16(17- 1609.
  • 6YUAN H F, JING B Z, YE F Y, et al. Generating and manipula- ting higher order Fano resonances in dual-disk ring plasmonic nanostructures [J]. Acs Nano, 2012, 6 (6): 5130-5137.
  • 7AIZPURUA J, HANARP P, SUTHERLAND D S, et ah Optical properties of gold nanorings [J ]. Physical Review Letters, 211113, 9~) (5) : I15741/1-1 - 11574111-4.
  • 8VERELLEN N, SONNEFRAUD Y, SOBHANI H, et al. Fa- no resonances in individual coherent plasmonic nanocavities[J].Nano Letters, 211119, 9 (4): 1663- 1667.
  • 9LIUSD, YANGYB, CHENZH, et al. Excitation of multi- ple Fano resonances in plasmonic clusters with D2h point group symmetry[J]. J phys Chem: C, 21113, 117 (27): 14218- 14228.
  • 10CHANG W S, LASSITER J B, SWANGLAP P, et al. A plasmonic Fano switch[J].Nano Lett, 2(112, 12 (9): 4977 - 4982.

二级参考文献28

  • 1KELLY K L, CORONADO E, ZHAO L L, et al. The optical properties of metal nanoparticles: the influence of size shape, and dielectric environment [J]. J Phys Chem: B 2003, 107 (3): 668-677.
  • 2HAYNES C L, MCFARLAND A D, ZHAO L L, et al. Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays [ J]1. J Phys Chem: B, 2003, 107 (30): 7337-7342.
  • 3KOTTMANN J P, MARTIN O J F, SMITH D R, et al. Dramatic localized electromagnetic enhancement in plasmon resonant nanowires [J]. Chem Phys Lett, 2001, 341 (1/2): 1 - 6.
  • 4MAW Y, YANG H, HILTON J P, et al. A numerical investigation of the effect of vertex geometry on localized surface plasmon resonance of nanostructures [J]. Opt Express, 2010, 18 (2): 843-853.
  • 5MAW Y, YAO J, YANG H, et al. Effects of vertex truncation of polyhedral nanostructures on localized surface plasmon resonance [J]. Opt Express, 2009, 17 (17): 14967- 14976.
  • 6ZOU S I., JANEL N, SCHATZ G C. Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes [J]. J Chem Phys, 2004, 120 (23) : 10871 - 10875.
  • 7ZOU S, SCHATZ G C. Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional sil ver nanoparticle arrays [J]. J Chem Phys, 2004, 121 (24) : 12606- 12612.
  • 8SUNG J H, HICKS E M, van DUYNE R P, et al. Nanoparticle spectroscopy: plasmon coupling in finite-sized two-dimensional arrays of cylindrical silver nanoparticlesp [J].J PhysChem: C, 2008, 112 (11): 4091-4096.
  • 9ZHAO L L, KELLY K L, SCHATZ G C. The extinction spectra of silver nanoparticle arrays: influence of array structure on plasma resonance wavelength and width [J]. J Phys Chem: B, 2003, 107 (30): 7343-7350.
  • 10PAL1K E D. Handbook of optical constants of solidsII [M]. San Diego: Academic Press, 1998.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部