期刊文献+

基于曲波系数加权融合的人脸识别 被引量:2

Face recognition based on weighted fusion of curvelet coefficients
下载PDF
导出
摘要 为了提高人脸识别率和缩短识别时间,研究了基于曲波变换的人脸识别技术。考虑到传统曲波变换无法将多尺度多方向的曲波特征进行最优表示且其特征维数过大的缺点,提出了一种基于自适应加权融合的曲波变换和独立分量分析(ICA)的人脸识别算法。该算法通过曲波变换提取原始人脸图像的最优尺度和方向上的曲波系数,并对这些特征系数进行多方向上的融合,根据类别可分离性的判据原则对融合后的系数进行加权,以减少特征数量,提高处理速度;通过独立分量分析降维,将这些特征投影到更具表达力的空间,以获取有效特征,减少冗余信息,便于最近邻分类器进行人脸识别。基于在奥利维帝研究实验室(ORL)人脸库、Yale B人脸库和AR人脸库对该算法进行了测试,结果表明,其识别率分别达到98%、97%和98.57%,单幅图片的识别时间分别为65.43,158.94和20.37ms,从而验证了其实用性。 The curvelet transform based face recognition was studied to raise the recognition rate and shorten the recognition time. Considering that the traditional curvelet transform is unable to optimally represent multi-scale, multi-direction curvelet features and its feature dimension is too high, the study put forward a novel face recognition algorithm using the curvelet transform based on adaptive weighted fusion and the independent component analysis (ICA). The algorithm extracts original face images' optimal Curvelet coefficients in multi-scale and multi-direction by Curvelet transform and fuses them along multi-direction, and weights the fused coefficients according to the class separability principle to reduce the feature quantity and raise the processing speed. It also uses ICA to realize di- mension reducing to project the features to more effective space to decrease ineffective and redundant information, so these preproeessed face features can be classified and recognized by tile nearest neighbor classifier, thus the face recognition can be achieved. The proposed algorithm was tested by using the face databases of ORL, Yale B and AR, and the recognition rate of 98%, 97% and 98.57%, as well as the corresponding recognition time of 65.43, 158.94 and 20.37ms on single image, were obtained respectively, showing its higher performance and practicality.
出处 《高技术通讯》 CAS CSCD 北大核心 2015年第5期463-468,共6页 Chinese High Technology Letters
基金 国家自然科学基金(61170120)资助项目
关键词 曲波变换 特征提取 独立分量分析(ICA) 人脸识别 特征融合 curvelet transform, feature extraction, independent component analysis (ICA), face recognition, feature fusion
  • 相关文献

参考文献16

  • 1王庆军,张汝波,潘海为,楼宋江.基于Log-Gabor小波和正交UDP的人脸识别[J].高技术通讯,2011,21(7):714-719. 被引量:3
  • 2周霞,张鸿杰,王宪.Shearlet多方向特征融合与加权直方图的人脸识别算法[J].光电工程,2013,40(11):89-94. 被引量:9
  • 3Krisshna N L A, Deepak V K, Manikantan K, et al. Face recognition using transform domain feature extraction and PSO-based feature selection. Applied Soft Computing, 2014, 22:141-161.
  • 4Zhang J L, Wang Y H, Zhang Z Y, et al. Comparison of Wavelet, Gabor and Curvelet transform for face recogni- tion. Optica Applicata, 2011, 41 ( 1 ) : 183-193.
  • 5Zhou L J, Liu W Q, Lu Z M, et al. Face recognition based on Curvelets and local binary pattern features via using local property preservation. Journal of Systems and Software, 2014, 95:209-216.
  • 6Ye J H, Hu D, Xia G M, et al. An advanced BPNN face recognition based on Curvelet transform and 2DPCA. In: Proceedings of the 8th International Conference on Com- puter Science & Education, Colombo, Sri Lanka, 2013, 1019-1022.
  • 7Li Y C, Wang Y L, Xiao R, et al. Curvelet based image compression via core vector machine. Optik, 2013, 124: 4859-4866.
  • 8Bhadauria H S, Dewal M L. Medical image denoising using adaptive fusion of eurvelet transform and total varia- tion. Computers and Electrical Engineering, 2013, 29 : 1451-1460.
  • 9Chen F R, Qin F, Peng G X, et al. Fusion of remote sensing images using improved ICA mergers based on wavelet decomposition. Procedia Engineering, 2012, 29: 2938-2943.
  • 10Wang D H, Wang X K, Kong S. Integration of multi-fea- ture fusion and dictionary learning for face recognition. Image and Vision Computing, 2013, 31 : 895-904.

二级参考文献25

  • 1Roweis S T, L K Saul. Nonlinear dimensionality reduction by locally linear embedding. Sc/ence, 2000 , 290(5500) : 2323- 2326.
  • 2Belkin M. Laplacima eigenmaps for dimensionality reduction and data representation. Neural Computation, 2003, 15 (6): 1373-1396.
  • 3He X F, Cai D, Yan S C, et al. Neighborhood preserving embedding. In: Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, China, 2005. 1208-1213.
  • 4He X F, Yan S C. Face recognition using Laplacian faces. IEEE Transaction on Pattern Analysis and Machine Intelli- gence,2005, 27(3) :328-340.
  • 5Yang J, Zhang D, Yang J Y, et al. Globally maximizing, lo- cally minimizing: unsupervised discriminant projection with application to face and palm biometrics. IEEE Transaction Pattern Anal Mach lntdl, 2007, 29 (4) : 650-664.
  • 6Deng W, Hu J, Guo J, et al. Comments on globally maxi- mizing, locally minimizing: unsupervised discriminant projec- tion with application to face and palm biometrics. IEEE Tram Pattern Anal Maeh InteU , 2008,30 (8) : 1503-1504.
  • 7Liu C J, Wechsler H. Gabor feature based classification using the enhanced fisher linear discriminmlt model for face recog- nition. IEEE Transactions on Image Processing, 2002, 11 (4) :467-476.
  • 8Zheng Z L, Yang F, Tan W A, et al. Gabor feature-based face recognition using supervised locality preserving projec- tion. Signal Processing, 2007,87(10) : 2473-2483.
  • 9Field D J. Relations between the statistics of natural images and the response properties of conical cells. Journal of the Optical Society of America, 1987 , 4 (12) : 2379-2394.
  • 10Phillips P, Flynn P, Scruggs T, et al. Overview of the face recognition grand challenge [C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, June 20-25, 2005, 1: 947-954.

共引文献9

同被引文献18

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部