期刊文献+

基于混合粒子群的RBF神经网络PID控制策略在某随动系统测试平台中的应用 被引量:5

Application of RBF Neural Network PID Control Strategy Based on Hybrid Particle Swarm in Test Platform of Servo System
下载PDF
导出
摘要 针对某武器随动系统的研制需求,设计了一种基于电动负载模拟器技术的随动系统测试平台。为了解决该平台的模型不确定性、非线性和PID参数难以匹配的问题,提出了一种基于混合粒子群算法的RBF神经网络PID控制策略。实际应用表明该控制策略易于实现PID参数的自整定,控制效果良好,具有快速响应性和较好的鲁棒性、自适应性。 A test platform of servo system based on the technology of electric dynamic load simulators was designed by aimed at the development needs of a weapon servo system. In order to solve the platform model uncertainty,nonlinearity and the problem of the proportion integration and differential( PID) parameters matched hardly,a control strategy of RBF neural network PID based on hybrid particle swarm optimization( HPSO) was proposed. In practical application,it shows that this control strategy is easy to realize selftuning of PID parameters,and has a good control effect with a fast response,strong robustness and self-applicability.
机构地区 南京理工大学 [
出处 《机床与液压》 北大核心 2015年第17期7-10,28,共5页 Machine Tool & Hydraulics
基金 国家自然科学基金资助项目(51305205)
关键词 混合粒子群 RBF神经网络 PID 随动系统 测试平台 Hybrid Particle Swarm RBF Neural network PID Servo system Test platform
  • 相关文献

参考文献3

二级参考文献17

  • 1周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社.2007.
  • 2高尚,杨静宇.群智能算法及其应用[M].北京:中国水利水电出版社,2007.
  • 3Hongsheng Li, Yangquan Chen. A fractional order proportional and derivative (FOPD) controller tuning algorithm [ C ]//Chinese Control and Decision Conference. China: Yantai, 2008 : 4059 - 4063.
  • 4Serdar E Hamamci. Stabilization using fractional - order PI and PID controllers [ J ]. Nonlinear Dyn, 2008 (51 ) : 329 - 343.
  • 5Dingyu Xue, YangQuan Chen. A comparative introduction of four fractional order controller[ C] // Congress on Intelligent Control and Automation. China, Shanghai,2002.
  • 6Passio K M. Biomimicry of social foraging bacteria for distributed optimization: models, principles, and emergent behaviors[J]. Journal of Optimization Theory and Applications, 2002:115(3) :603 - 628.
  • 7柯晶 钱积新.应用粒子群优化的非线性系统辨识[J].电路与系统学报,2003,8(4):12-15.
  • 8James Kennedy,Russ Eberhart.Particle swarm optimization[C]// Proceedings of the 1995 IEEE International Conference on Neural Networks.Piscataway,1995:1942-1948.
  • 9Xiaohui Hu,Yuhui Shi,Russ Eberhart.Recent advances in particle swarm[C]// IEEE Congress on Evolutionary Computation.Portland,2004:90-98.
  • 10Yuhui Shi,Russ Eberhart.A modified particle swarm optimizer[C]// Proceedings of the IEEE Congress on Evolutionary Computation.Piscataway,1998:69-74.

共引文献24

同被引文献38

引证文献5

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部