期刊文献+

基于机器视觉的PCB铣刀磨尖对刀算法研究 被引量:3

Research on Algorithms of Tool Setting for PCB Milling Cutter Sharpening Based on Machine Vision
下载PDF
导出
摘要 为了实现PCB铣刀的自动磨尖和降低人工成本,本文提出了一种基于机器视觉的对刀算法。该算法首先对二值化后的图像采用区域生长算法找出目标区域,其次根据不同刀型铣刀分别采用Canny边缘检测算法和Harris角点检测算法求得图像特征点,最后依据图像特征点的几何关系求得对刀角度。该算法的重复精度检测结果表明:PCB铣刀在同一位置的对刀角度最大误差不超过0.370°。上述实验结果说明该对刀算法能够满足设备实际精度要求。 In order to realize sharpening PCB milling cutter automatically and lower labor costs,an algorithm of tool setting based on machine vision was proposed. Firstly,the region growing algorithm was used to find the target area in the binarized image,followed by using Canny edge detection algorithm and Harris corner detection algorithm to find the image feature points based on the different types of milling cutter,finally,the angle of tool setting was gotten according to the geometric relationship of image feature points. The repeatability accuracy test results of the algorithm indicate that the maximum error of angle of tool setting is no more than 0. 370° while PCB milling cutters are in the same position. The results of experiments above demonstrate that the requirement of actual accuracy in equipment is met by the algorithm of tool setting.
出处 《机床与液压》 北大核心 2015年第17期76-79,共4页 Machine Tool & Hydraulics
基金 广东省产学研结合项目(2011A090200054)
关键词 机器视觉 对刀角度 区域生长 CANNY边缘检测 HARRIS角点检测 Machine vision Angle of tool setting Region growing Canny edge detection Harris corner detection
  • 相关文献

参考文献1

二级参考文献13

  • 1Hecht O,Dishon G.Automatic optical inspection (AOI)[C]// Proc Electronic Compon Conf.Las Vegas,NV:IEEE,1990:659-661.
  • 2Hong Ji-joong,Park Kyung-ja,Kim Kyung-gu.Parallel processing machine vision system for bare PCB inspection[C]// Proc Industrial Electronics Society conference.Aachen:IEEE Industrial Electronics Society Press,1998:1346-1350.
  • 3Scaman M E,Economikos L.Computer vision for automatic inspection of complex metal patterns on multichip modules (MCM-D)[J].IEEE Trans on Components,Packaging,and Manufacturing Technology,Part B:Advanced Packaging,1995,18(4):675-684.
  • 4Seaman M E,Economikos L,Lambright J.Computer vision for automatic inspection of a high density grid of pads on multi-chip modules (MCM-D)[J].IEEE Trans on Components,Packaging,and Manufacturing Technology,Part B:Advanced Packaging,1994,17 (3):291-299.
  • 5Cohen R,Dishon G.A dedicated multichip module automatic optical inspection system[C]//Electronic Manufacturing Technology Symposium on Competitive Manufacturing for the Next Decade.Washington,DC:IEEE,1990:51-55.
  • 6Park Tae-hyoung,Kim Hwa-jung.Path planning of automatic optical inspection machines for PCB assembly systems[C] // IEEE International Symposium on Computational Intelligence in Robotics and Automation.Espoo,Finland:IEEE Computer Society Press,2005:249 -254.
  • 7中国电子元件行业协会信息中心.2005板中国印制电路板(PCB)市场竞争研究报告[EB/OL].北京:中国电子元件行业协会,2006-05-20.http://www.ic-ceca.org.cn/yjbg/report.asp.
  • 8Raymond D W.Finding opens with optics[C] //Proc Test Conference.Washington,DC:IEEE Computer Society Press,1997:277.
  • 9Raymond D W,Haigh D F.Why automate optical inspection?[C]//Proc Test Conference.Washington,DC:IEEE Computer Society Press,1997:1033.
  • 10Zhou Dong-xiang,Liu Yun-hui,Cai Xuang-ping.An efficient and Robust corner detection algorithm[C]//Fifth World Congress on Intelligent Control and Automation.Hangzhou:IEEE,2004:4020-4024.

共引文献13

同被引文献21

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部