摘要
针对认知无线电中的主用户仿冒攻击检测问题,给出了基于矩形积分双谱的局部线性嵌入降维算法,用于识别主用户(PU)和仿冒用户(SU)。选择矩形积分双谱作为识别特征参数,利用局部线性嵌入算法(LLE)进行特征数据约简,通过基于核函数的支持矢量机(SVM)进行个体识别。实验结果表明,该方法具有较高的识别率,并能够较好解决PUE攻击检测问题。
To address the issue of primary user emulation attack identification in cognitive radio, an improved square integral bi-speetrum dimension reduction method using locally linear embedding algorithm is proposed for the identification of primary user(PU) and secondary user( SU ). Square integral hi-spectrum ( SIB ) is used as the feature parameter, and local linear embedding (LLE) is utilized to reduce the feature dimension,then a support vector machine(SVM) based on kernel-function is used for individual identifica- tion.The experimental results demonstrate that the suggested technique has a high recognition rate,and it can solve the problem of PUE attack identification.
出处
《无线电通信技术》
2015年第5期29-32,45,共5页
Radio Communications Technology
基金
国家自然科学基金面上项目(61271276)
陕西省教育厅项目(14JK1668)
关键词
通信辐射源
矩形积分双谱
局部线性嵌入算法
支持矢量机
PUE攻击检测
radio transmitter
square integral bi-spectrum ( SIB )
local linear embedding ( LLE )
support vector machine ( SVM )
primary user emulation attack identification