摘要
针对机器人在特定工作坏境下工作效率低的情况,提出一种以时间为最优的轨迹规划方法。采用七次B样条曲线完成机器人各关节位置-时间序列的插值,并将运动学约束转化为B样条曲线控制顶点的约束,以机器人关节轨迹运行时间最优为优化指标,采用遗传算法对轨迹曲线执行时间最短寻优,规划出满足运动学约束及力矩平滑的时间最优轨迹。实验结果表明,该规划算法能够明显减小加加速度的累积效应,提高机器人执行轨迹的最优时间。
For the problem of the low efficiency of robot under a certain working environment, a trajectory planning method based on optimal time is put forward. Firstly, by using the seven times B spline curve, the interpolation of the robot position time series is completed. Then the kinematic constraints are transformed into the constraints of B spline control vertex. Finally, the time optimal trajectory meeting the kinematics constraints and torque smoothing is obtained by using genetic algorithm, based on the optimization target of robot joint trajectory optimal running time. The experimental results show that the cumulative effect of the planning algorithm could obviously be reduce the jerk and the optimal time of the robot performing trajectory is improved.
出处
《机械传动》
CSCD
北大核心
2015年第9期41-45,共5页
Journal of Mechanical Transmission
关键词
机器人
轨迹规划
时间最优
B
样条
遗传算法
Robot Trajectory planning Time -optimal B -spline Genetic algorithm