期刊文献+

基于对称性理论的医学图像多阶段分类算法 被引量:7

Medical Image Multi-Stage Classification Algorithm Based on the Theory of Symmetric
下载PDF
导出
摘要 利用影像归档和通信系统收集的大量医学CT图像被广泛应用于临床诊断,从中提取的ROI区域和ROI区域的特征可以用来对医学CT图像进行分类,从而辅助医生提高诊断精度.医学图像的成像结果显示一张医学图像关于中垂线两侧近似对称.基于这一脑部医学领域知识的指导,文中提出了基于对称性理论的医学图像多阶段分类(Multi-Stage Classification,MSC)方法.首先,文中提出了弱对称性和强对称性的定义,从不同粒度对医学图像的对称性进行了描述;然后,给出了基于灰度直方图相交性的弱对称性判定算法,对医学图像在较粗粒度上进行了第1阶段的分类;接着,提出了基于点对称的强对称性判定算法,结合弱对称性判定算法,对第1阶段分类结果为异常的图像进行了更细粒度的第2阶段分类,定位了病变区域的位置;最后,利用对病变区域所提取的特征,对病变区域进行了第3阶段的分类,以达到辅助医生诊断的效果.实验结果表明,基于对称性理论的医学图像多阶段分类方法提高了医学图像分类的准确度,同时减少了医生诊断决策的时间. A large number of medical CT images collected by PACS are widely used in clinical diagnosis. ROI and the features of ROI extracted from CT images can be utilized to classify these medical images so as to assist doctors to improve the efficiency and precision of the diagnosis. Brain imaging shows that it is approximately symmetrical about the brain stem. Based on this medical knowledge guidance, a medical image multi-stage classification (MSC) based on the theory of symmetry is presented in this paper. First of all, weak symmetry and strong symmetry is defined to describe the symmetry from the different granularities. Then, the weak symmetry decision algorithm was given to finish the first-stage classification for medical image in the coarse granularity. Further, the strong symmetry decision algorithm based on the point symmetry is proposed, combining with the weak symmetry decision algorithm, to complete the second-stage classification for the abnormal images classified from the first-stage in the fine granularity in order to locate lesion area. Finally, the features extracted from the lesions are used for the third-stageclassification to help the doctor's diagnosis. Experimental results show that multi-stage classifi- cation method based on the theory of symmetry can increase the accuracy of the classification and reduce the time of the doctor's diagnosis.
出处 《计算机学报》 EI CSCD 北大核心 2015年第9期1809-1824,共16页 Chinese Journal of Computers
基金 国家自然科学基金(61272184 61202090 61100007) 新世纪优秀人才支持计划(NCET-11-0829) 中央高校自由探索计划项目(HEUCF100602 HEUCFT1202)资助~~
关键词 医学图像 弱对称性 强对称性 多阶段分类 medical image weak symmetry strong symmetry multi-stage classification
  • 相关文献

参考文献4

二级参考文献32

  • 1韩东峰,李文辉,郭武.基于潜在局部区域空间关系学习的物体分类算法[J].计算机学报,2007,30(8):1286-1294. 被引量:5
  • 2Alison Noble J,Djamal Boukerroui.Ultrasound image segmentation:ASurvey[J].Transactions on Medical Imaging,2006,25(8):987-1010.
  • 3Anant Madabhushi,Dimitris N Metaxas.Combining low-,high-leveland empirical domain knowledge for automated segmentation of ultra-sonic brest lesions[J].Transactions on Medical Imaging,2003,22(2):155-169.
  • 4Gao Chaobang,Zhou Jiliu,Zheng Xiuqing,et al.Image enhancementbased on improved fractional differentiation[J].Journal of Computa-tional Information Systems,2011,7(1):257-264.
  • 5Smadar Gefen,Oleh J Tretial,Catherine W Piccoli,et al.ROC analy-sis of ultrasound tissue characterization classifiers for breast cancer di-agnosis[J].Transactions on Medical Imaging,2003,22(2):170-177.
  • 6Cheng H D,Shan Juan,Wen Ju,et al.Automated breast cancer de-tection and classification using ultrasound images:A Survey[J].Pat-tern Recognition,2010,43:299-317.
  • 7韩家炜,KamberM.数据挖掘概念与技术.第2版.北京:机械工业出版社,2006:396-399.
  • 8Datta R, Joshi D, Li J, et al. Image retrieval; Ideas, influ- enees, and trends of the new age. ACM Computing Surveys, 2008, 40(2): 51-60.
  • 9Swain M J, Ballard D H. Color indexing. International Jour- nal of Computer Vision, 1991, 7(1): 11-32.
  • 10Liu G H, Yang J Y. Image retrieval based on the texton co- occurrence matrix. Pattern Recognition, 2008, 41 (12) : 3521-3527.

共引文献7

同被引文献65

  • 1陈长亮,杨伟杰,陈振生.基于图像识别句法分析的心电图计算机自动分析[J].中国医疗器械信息,2006,12(3):17-18. 被引量:4
  • 2Liu Jingchen, Slota G, Zheng Gang, et al. Symmetry Detection from Real World Images Competition 2013: Summary and Results [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recogni- tion. Washington D. C. , USA: IEEE Press, 2013: 200- 205.
  • 3Hel O H, Kaplan C S. Computational Symmetry in Computer Vision and Computer Graphics [ M]- Boston, USA : Now Publishers Inc. , 2010.
  • 4Xiang Yin, Li Shutao. Symmetric Object Detection Based on Symmetry and Centripetal-sift Edge De- scriptor[ C]//Proceedings of the 21 st International Conference on Pattern Recognition. Washington D. C. , USA :IEEE Press ,2012 : 1403-1406.
  • 5Sun Yu, Bhanu B. Reflection Symmetry-integrated Image Segmentation[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2012,34 ( 9 ) : 1827-1841.
  • 6Loy G,Zelinsky A. Fast Radial Symmetry for Detecting Points of Interest [J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25 ( 8 ) : 959- 973.
  • 7Tuzikov A V,Colliot O,Bloch I. Brain Symmetry Plane Computation in MR Images Using Inertia Axes and Optimization [ C ]//Proceedings of the 16th International Conference on Pattern Recognition. Washington D. C. , USA : IEEE Press, 2002 : 516-519.
  • 8Loy G,Eklundh J O. Detecting Symmetry and Symmetric Constellations of Features [ M ]. Berlin, Germany : Springer, 2006.
  • 9GuoXiaojie, Cao Xiaochun. MIFT: A Framework for Feature Descriptors to be Mirror Reflection Invariant[J]Image and Vision Computing,2012,30( 8 ) :546-556.
  • 10Lowe D G. Distinctive Image Features from Scale- invariant Keypoints [ J ]. International Journal of Com- puter Vision,2004,60(2) :91-110.

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部