期刊文献+

滑动弧放电等离子体重整甲烷关键技术分析 被引量:17

Analysis of Critical Technology for Gliding Arc Discharge Plasma Assisted Methane Reforming
下载PDF
导出
摘要 滑动弧放电等离子体技术在甲烷重整制取氢气或合成气方面的应用很广泛且显示了良好前景。为此,主要就滑动弧的结构和特性及其在该方面的研究进展进行了总结分析。结果表明:在滑动弧用于天然气或沼气重整技术中,甲烷转化率约为3%~52.6%,而氧气或水的加入可以在一定程度上优化反应效果,此外,在催化剂的协同作用下,CH4转化率可升至100%,H2选择性也达93%;在甲烷部分氧化重整和甲烷裂解制氢方面,旋转滑动弧的重整效果明显优于传统刀片式滑动弧,在处理能力得到明显提升的同时,CH4转化率和H2选择性均明显升高,分别可达91.8%和100%,同时,制氢电耗维持在较低水平;滑动弧进行甲烷水蒸气重整的研究较少,尽管CH4转化率不高,但其制氢电耗可低至1.08 k J/L。 Gliding arc discharge (GAD) plaslna has been widely investigated for hydrogen or syngas production from methane and shown promising application prospects. In this paper, the characteristics of the GAD plasma and its applica- tion on methane reforming for hydrogen or syngas production are reviewed.Results show that, for the GAD assisted reforming of natural gas or biogas, the CH4 conversion is 3%-52.6% and the addition of 02 or H20 can improve the re- forming performance to some extent. Additionally, with the simultaneous effect of plasma and catalyst, the CH4 conversion can be increased to 100%, with a H2 selectivity of 93%. For the partial oxidation or decomposition of methane, the rotating gliding arc (RGA) plasmas significantly outperform the traditional knife-shaped GAD. A maximum CH4 conversion of 91.8% and a H2 selectivity of up to 100% can be achieved, with a largely enhanced processing capacity and relatively low power consumption. Few studies are conducted on GAD assisted methane steam reforming. Although the CH4 conversion is relatively low, the power consumption for hydrogen production can be as low as 1.08 kJ/L.
出处 《高电压技术》 EI CAS CSCD 北大核心 2015年第9期2930-2942,共13页 High Voltage Engineering
基金 国家自然科学基金(51076142) 高等学校博士学科点专项科研基金(20120101110099)~~
关键词 滑动弧 等离子体 反应器 物理特性 甲烷重整 氢气 合成气 重整方式 gliding arc plasma reactor physical characteristics methane reforming hydrogen syngas reforming methods
  • 相关文献

参考文献101

  • 1Lesuenr H, Czernichowski A, Chapelle J. Device for generating low-temperature plasmas by formation of sliding electric discharges: France, 2639172[P]. 1988-11-17.
  • 2Fridman A, Nester S, Kennedy L A, et al. Gliding arc gas discharge[J]. Progress in Energy and Combustion Science, 1998, 25(2): 211-231.
  • 3Mutaf-Yardimci O, Saveliev A V, Fridman A A, et al. Thermal and nonthermal regimes of gliding arc discharge in air flow[J]. Journal of Applied Physics, 2000, 87(4): 1632-1641.
  • 4Czernichowski Ai 'Gliding arc-applications to engineering and envi- ronment control[J]. Pure and Applied Chemistry, 1994, 66(6): 1301-1310.
  • 5Cormier J M, Rusu I. Syngas production via methane steam reforming with oxygen: plasma reactors versus chemical reactors[J]. Journal of Physics D: Applied Physics, 2001, 34(18): 2798-2803.
  • 6Rueangjitt N, Sreethawong T, Chavadej S, et al. Plasma-catalytic reforming of methane in AC microsized gliding arc discharge: effects of input power, reactor thickness, and catalyst existence[J]. Chemical Engineering Journal, 2009, 155(3): 874-880.
  • 7Czernichowski A, Czemichowski P, Ranaivosoloarimanena A. Plasma pyrolysis of natural gas in a gliding arc reactor[C]//Proceedings of the 11th World Hydrogen Energy Conference. Stuttgart, Germany: [s.n.], 1996: 637-645.
  • 8Rusu I, Cormier J M. On a possible mechanism of the methane steam reforming in a gliding arc reactor[J]. Chemical Engineering Journal, 2003, 91(1): 23-31.
  • 9Gangoli S, Gutsol A, Fridman A. Rotating non-equilibrium gliding arc plasma disc for enhancement in ignition end combustion of hydrocar- bon fuels[C]//17th International Symposium on Plasma Chemistry. Toronto, Canada: [s.n.], 2005: 1042-1043.
  • 10Lee D H, Kim K T, Kang H S, et al. NOx reduction strategy by staged combustion with plasma-assisted flame stabilization[J]. Energy & Fu- els, 2012, 26(7): 4284-4290.

二级参考文献181

共引文献100

同被引文献246

引证文献17

二级引证文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部