期刊文献+

基于改进的加权分块2D-PCA人脸识别技术的研究 被引量:3

Research of the technology of face recognition based on the improved weighted block 2D-PCA
下载PDF
导出
摘要 比较了PCA(Principal Component Analysis)和2D-PCA(Two-Dimensional Principal Component Analysis)人脸识别算法。在2D-PCA的基础上提出了一种改进算法,即基于整体区域、感兴趣区域与非感兴趣区域的加权分块2D-PCA算法。该算法借助权值的动态调整,最终实现了最优解。基于知名脸库ORL设计实验来验证文中提出的改进的加权分块2D-PCA算法。分析试验结果表明,发现本算法识别率达到97.5%,较PCA算法提高21.66%,较2D-PCA算法提高10.08%,进一步证实本算法较PCA和2D-PCA显著提高了人脸识别的准确率。 This paper compares the PCA (Principal Component Analysis) and 2D-PCA (Two-Dimen- sional Principal Component Analysis) face recognition algorithm. On the basis of the 2D-PCA, an im- proved weighted block 2D-PCA algorithm was proposed, which is based on the whole region, the re- gion of interest and other regions. By dynamically adjusting the weights, this algorithm finally achieved the optimal solution. To verify the improved weighted block 2D-PCA algorithm proposed in this paper, experiments based on the well-known face database ORL were designed, and the experimental results show that the proposed algorithm recognition rate reached 97.5% , 21.66% higher than that of PCA algorithm, 10.08% higher than that of 2D-PCA algorithm, which further confirmed that compared with PCA and 2D-PCA, the proposed algorithm significantly improves the accuracy of face recognition.
作者 余元辉 邓莹
出处 《河南农业大学学报》 CAS CSCD 北大核心 2015年第4期500-504,共5页 Journal of Henan Agricultural University
基金 福建省科技厅高校专项基金项目(JK2012026)
关键词 人脸识别 PCA 2D-PCA 分块PCA 特征矩阵 face recognition algorithm PCA 2D-PCA block 2D-PCA feature matrix
  • 相关文献

参考文献10

二级参考文献77

  • 1Kumar N M. An efficient multimodal biometric facerecognition using speech signal[J]. ICSIP, 2010 : 201-206.
  • 2Shekar B H. Face recognition using kernel entropy component analysis[J]. Neurocomputing, 2011,74 (6) : 1053-1057.
  • 3邓伟宏.高精度人脸识别算法研究[D].北京:北京邮电大学,2009.
  • 4谢立权.基于PCA的人脸识别系统的设计与实现[D].南京:东南大学.2007.
  • 5Kyungnam K. Face recongnition using principle component analysis[J]. IEEE Signal Processing Society, 2002,9 (2) : 40 - 42.
  • 6Spacek L D.Computer Vision Science Research Projects[EB/ OL]. http://dces.essex.ac.uk/mv/allfaces/faces94.html (2011- 08-20) [2011-09-20].
  • 7Ahonen T, Hadid A. Face description with local binary patterns: Application to face recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2006,28(12):2037-2014. [doi: 10.IIOgzTPAMI.2006.244].
  • 8Belhumeur PN, Hespanha J. Eigenfaces vs. Fisherfaces: Recognition using specific linear projection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1997,19(7):711-720. [doi: 10.1109/34.598228].
  • 9Turk M, Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991,3(1):71-86. [doi: 10.1162/jocn. 1991.3.1. 71].
  • 10Zhao W, Chellappa R, Phillips PJ. Face recognition: A literature survey. ACM Computing Surveys, 2003,35(1):399-458. [doi: 10. 11451954339.954342].

共引文献147

同被引文献34

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部