期刊文献+

电动汽车动态路面驱动防滑控制与仿真 被引量:6

Acceleration slip regulation and simulation for electric vehicles under dynamic road conditions
下载PDF
导出
摘要 为了提高电动汽车在复杂路面情况下的加速能力和稳定性,提出了一种基于动态路面最优滑转率估计的驱动防滑控制策略并进行了仿真研究。首先从车辆-地面系统模型入手,分析了路面参数估计的数学原理并给出了单一路面下的最优滑转率判别条件,进而将多种路面交叠的情况下的最优滑转率参数估计问题转化为高、低附着路面相互切换的统一问题进行了深入分析,引入高估门限λmax与低估门限λmin设计了最优滑转率的动态估计方法。基于动态路面的参数估计建立了相应的驱动防滑控制策略。仿真结果表明:所提出的参数估计方法和控制策略显著提高了电动汽车的加速能力,且在路面条件突变的情况下也能有效抑制驱动轮的过度滑转,改善了整车的行驶稳定性。 An acceleration slip regulation strategy based on optimal slip ratio dynamic estimation and its simulation study were presented to improve the accelerating ability and stability for electric vehicles under complicated road conditions. Firstly, the mathematical principle of road parameter estimation was analyzed using the vehicle-road sys- tem model, through which the judgment condition of optimal slip ratio under a single road condition was proposed. Then the estimation problem of optimal slip ratio under complicated road conditions was analyzed by transforming it into a uniform problem of the switch between high and low ground adhesion coefficients. Furthermore, the dynamic estimation method of optimal slip ratio is acquired by introducing overestimated threshold λmax and underestimated threshold λmin Finally, the corresponding acceleration slip regulation strategy is established based on estimating dynamic road parameters. Simulation results indicate that the proposed estimation method and control strategy can im- prove the accelerating ability of extended range electric vehicles observably and can also prevent the excessive slip of dfiving wheel effectively and improve vehicle's stability while the road condition changes suddenly.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2015年第8期1120-1125,共6页 Journal of Harbin Engineering University
基金 国家自然科学基金资助项目(51205051) 汽车仿真与控制国家重点实验室开放基金资助项目(20121116)
关键词 电动汽车 动力学控制 驱动防滑控制 动态路面识别 控制策略 系统仿真 electric vehicle kinetic control acceleration slip regulation dynamic road condition identification control strategy system simulation
  • 相关文献

参考文献10

  • 1SHI J, LI X, LU T, et al. Development of a new traction control system for vehicles with automatic transmissions [ J ]. International Journal of Automotive Technology, 2012, 13 (5) : 743-750.
  • 2DEUR J, PAVKOVIC D, BURGIO G, et al. A model-basedtraction control strategy non-reliant on wheel slip information [ J ]. Vehicle System Dynamics, 2011, 49 ( 8 ) : 1245-1265.
  • 3李亮,冉旭,李红志,康明鑫,宋健,韩宗奇.用于汽车牵引力控制的复杂路面轮胎—道路附着状态判断[J].机械工程学报,2012,48(10):109-114. 被引量:7
  • 4LI H Z, LI L, HE J, et al. PID plus fuzzy logic method for torque control in traction control system [ J ]. International Journal of Automotive Technology, 2012, 13(3) : 441-450.
  • 5YASILJEVIC G, GRIPARIC K, BOGDAN S. Slip-based traction control system with an on-line road condition esti- mation for electric vehicles [ C]//2012 IEEE International Conference on Control Applications. Dubrovnik, Croatia, 2012 : 359-400.
  • 6KAWABE T. Model predictive PID traction control systems for electric vehicles[ C]//2012 IEEE International Confer- ence on Control Applications. Dubrovnik, Croatia, 2012 : 112-117.
  • 7赵峰,罗禹贡,李克强,张文明.基于动态协调控制的ISG型混合动力电动汽车牵引力控制方法[J].汽车工程,2011,33(6):463-467. 被引量:9
  • 8DOUDE M, MOLEN G M. Design methodology for a range- extended PHEV [ C ]//IEEE Vehicle Power and Propulsion Conference. Dearborn, Michigan, 2009: 817-819.
  • 9PACEJKA H B, BAKKER E. The magic formula tyre model [ J ]. Vehicle System Dynamics : International Journal of Ve- hicle Mechanics and Mobility, 1992, 21(S1): 1-18.
  • 10PUSCA R, AIT-AMIRAT Y, BERTHON A, et al. Model- ing and simulation of a traction control algorithm for an e- lectric vehicle with four separate wheel drives [ C ]//IEEE 56th Vehicular Technology Conference. Vancouver, Cana- da, 2002: 1671-1675.

二级参考文献16

  • 1Alexander Kolbe, Bemd Neitzel, Norbert Ocvirk, et al. Teves MK IV Anti-Lock and Traction Control System [ C ]. SAE Paper 900208.
  • 2Kiyotaka Ise, Fyjita K, Inoue Y, et al. The "Lexus" Traction Control(TRAC) System [ C ]. SAE Paper 900212.
  • 3Zhang Jianlong, Chen Deling, Yin Chengliang. Adaptive Fuzzy Controller for Hybrid Traction Control System Based on Automatic Road Identification [ C ]. International Conference on Automation Science and Engineering, Shanghai China,2006:524 - 529.
  • 4Li Shoubo, Liao Chenglin, Chen Shanglou, et al. Traction Control of Hybrid Electric Vehicle [ C ]. Vehicle Power and Propulsion Conference, Dearborn USA ,2009 : 1536 - 1540.
  • 5李孟海.混合动力电动汽车协调控制方法及其硬件在环仿真实验[D].北京:清华大学,2006.
  • 6Yasuhiro Oshiumi, Motoki Shino, Masao Nagai. Traction Force Control of Parallel Hybrid Electric Vehicle by Using Model Matc- hing Controller[ C ]. AVEC, 1998 : 129 - 134.
  • 7VAN ZANTEN A T, ERHARDTR, PFAFF G , et al. Control aspects of the Bosch-VDC[C]//AVEC’96, International Symposium on Advanced Vehicle Control, Aachen, June 24 - 28, 1996:574-607.
  • 8TANELLI M, PIRODDI L, SAVARESI S M. Real-time identification of tire-road friction conditions[J]. The Institution of Engineering and Technology Control Theory Appl., 2009, 3(7):891-906.
  • 9PAJAMANI R, PIYABONGKARN N, YI K, et al. Tire-road friction-coefficient estimation[J]. IEEE Control Systems Magazine, 2010, 30(4):4-69.
  • 10ERDOGAN G, ALEXANDER L, RAJAMANI R. Estimation of tire-road friction coefficient using a novel wireless piezoelectric tire sensor[J]. IEEE Sensors Journal, 2011, 11(2):267-279.

共引文献14

同被引文献39

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部