期刊文献+

图像局部纹理特征自适应超分辨率重建 被引量:5

An Adaptive Super-resolution Reconstruction of Image Local Texture Feature
下载PDF
导出
摘要 在双边总变分(BTV)正则化方法中,由于同时考虑了周围像素与中心像素的几何距离和灰度相似性,获得了比Tikhonov正则化方法和总变分(TV)正则化方法更好的重建质量。然而,在BTV方法中,由于正则化参数λ为一个定值,使得该方法不能同时保持图像的边缘纹理信息和抑制图像噪声。针对这个问题,提出一种图像局部纹理特征自适应的正则化重建方法,基于灰度共生矩阵提取图像局部纹理特征,建立正则化参数与图像局部纹理特征的函数关系,使正则化参数λ随图像局部纹理特征自适应调整。实验结果显示,与BTV方法相比,该方法能使图像的边缘和纹理细节重建效果更好,并有效抑制噪声。 In bilateral total variation regularization method(BTV), considering geometric distance and gray level similarity of the center pixel and the surrounding pixels, the method to get better reconstruction quality than Tikhonov regularization method and total variation regularization method (TV) is obtained. However, in BTV meth?od, the regularization parameterλis a fixed value, so the method cannot maintain the image edge texture informa?tion and suppress image noise at the same time. In order to solve this problem, an adaptive regularization reconstruc?tion algorithm for image local texture feature is proposed, and based on gray level co-occurrence matrix(GLCM), the image local texture feature is extracted, the function relationship of regularization parameters and image local texture feature is established, so regularization parameterλis adjusted adaptively according to image local texture feature. The experimental results show that compared with BTV, this algorithm can better reconstruct the image edge texture details and suppress the noise effectively.
出处 《光电技术应用》 2015年第4期24-26,50,共4页 Electro-Optic Technology Application
基金 国防科技重点实验室基金项目
关键词 超分辨率重建 图像局部纹理特征 正则化参数 灰度共生矩阵 双边总变分 super resolution reconstruction image local texture feature regularization parameter gray level co-occurrence matrix bilateral total variation
  • 相关文献

参考文献8

  • 1张良培, 沈焕锋, 张洪艳, 等.图像超分辨重建[M]. 北京:科学出版社, 2012:3-47.
  • 2Park C S, Park K M, Kang G M. Super-resolution image reconstruction: a technical overview[J]. IEEE Signal Processing Magazine, 2003, 20(3): 21-36.
  • 3江静,张雪松.图像超分辨率重建算法综述[J].红外技术,2012,34(1):24-30. 被引量:31
  • 4Farsiu S, Robinson M D. Fast and robust multi-frame super resolution[J]. IEEE Transactions on Image Processing, 2004, 13(10): 1327-1344.
  • 5刘丽,匡纲要.图像纹理特征提取方法综述[J].中国图象图形学报,2009,14(4):622-635. 被引量:427
  • 6Robeert M Haraljck, Shanmugam K, Dinstein Hak. Textural features for image classification[J]. IEEE Transactions on Systems, Man And Cybernetics, 1973, 3(6):610-621.
  • 7高程程,惠晓威.基于灰度共生矩阵的纹理特征提取[J].计算机系统应用,2010,19(6):195-198. 被引量:175
  • 8Lucchese L, Cortelazzo G M. A noise-robust frequency domain technique for estimating planar roto-translations[J]. IEEE Transactions on Signal Processing, 2000, 48(6): 1769-1786.

二级参考文献45

  • 1张志龙,李吉成,沈振康.基于局部沃尔什变换的纹理特征提取方法研究[J].信号处理,2005,21(6):589-596. 被引量:6
  • 2薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析[J].电子学报,2006,34(1):155-158. 被引量:203
  • 3陈洋,王润生.结合Gabor滤波器和ICA技术的纹理分类方法[J].电子学报,2007,35(2):299-303. 被引量:25
  • 4Haralick R M,Shanmugam K.Texture features for image classification.IEEE Tmns.on Sys,Man,and Cyb,1973,SMC-3(6):610-621.
  • 5Ulaby FT,Kouyate F,Brisco B,et al.Texturalinformation in SAR Images.IEEE Transactions on Geoscience and Remote Sensing,1986,24(2):235-245.
  • 6Tsai R Y, Huang T S. Multiframe image restoration and registration, in Advances ill Computer Vision and Image Processing: JAI Press Inc., 1984: 317-339.
  • 7Kim S P, Bose N K, Valenzuela H M. Recursive reconstruction of high resolution image from noisy undersampled multiframes[J]. IEEE Trans. Acoust. Speech, Signal Processing, 1990, 38:1013-1027.
  • 8Bose N K, Kim H C, Valenzuela H M. Reeursive implementation of total least squares algorithm fbr image reconstruction from noisy, undersampled multiframes. Acoustics, Speech and Signal Processing, Minneapolis[C]//IEEE 1993, pp. 269-272.
  • 9Rhee S H, Kang M G. Discrete cosine transform based regularized high-resolution image reconstruction algorithm. Opt. Eng., 1999, 38(8): 1348-1356.
  • 10John M. Wiltse, John L. Miller. Imagery improvements in staring infrared imagers by employing subpixel microscan[J]. Optical Engineering, 2005,44(5):056401-056409.

共引文献618

同被引文献17

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部