期刊文献+

基于PCNN和FCM的钢带表面缺陷检测

Surface defects inspection of metal strips based on PCNN and FCM
下载PDF
导出
摘要 针对目前还没有较好的方法正确的检测金属钢带表面缺陷,提出一种结合耦合神经网络(PCNN)和模糊C-均值(FCM)的钢带表面缺陷检测算法,首先通过有效性指数求得聚类中心,其次用PCNN最短路径法确定目标函数极小值,最后通过改进的FCM分割目标。通过对比实验表明,该算法能够快速的分割出缺陷目标,正确率在95%以上。 For there is no better way to detect the defects of metal strip accurately, it presents a new algorithm based on im- proved pulse coupled neural network (PCNN) and Fuzzy C-means (FCM). Firstly it can be obtained a clustering center through the effectiveness index. Secondly, through the PCNN shortest path algorithm, the objective function minimum values was deter- mined. Finally, it can be detected the defects of metal strips by improved FCM. By the comparison Experiments, it shows that this algorithm can rapidly detect the defects, the proposed method can increase segmentation accuracy rate to 95%
作者 亢伉
机构地区 宝鸡文理学院
出处 《电子设计工程》 2015年第18期61-64,共4页 Electronic Design Engineering
基金 宝鸡文理学院校级重点项目(ZK14087)
关键词 缺陷检测 最短路径 耦合神经网络 模糊聚类 defect inspection the shortest path pulse coupled neural network (PCNN) fuzzy clustering
  • 相关文献

参考文献6

二级参考文献42

  • 1顾晓东,余道衡,张立明.时延PCNN及其用于求解最短路径[J].电子学报,2004,32(9):1441-1443. 被引量:16
  • 2Kim S,LeeM H,Woo KB.Wavelet analysis to defects detection in weaving p rocesses[J].IEEE Intenational Symposium on Industrial Electronics,1999,3(11):1406-1409.
  • 3Chan Chi-ho,Pang Grantham K H.Fabric defect detection by Fourier analysis[J].IEEE Transactions on Industry App lications,2000,36(5):1267-1276.
  • 4B.R.Hunt and T.M.Cannon,"Nonstationary assumptions of Gaussian models of images,"IEEE Trans.Syst.,Man,Cybern.,vol.SMC-6,876-881,1976.
  • 5Ying Li,Anthony Vodacek,Robert L.Kremens,Ambrose Ononye,and Chunqiang Tang,A Hybrid Contextual Approach to Wildland Fire Detection Using Multispectral Imagery.
  • 6Dunn J C. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact, Well Separated Cluster. Journal of Cybernetics, 1973, 3(3) : 32-57.
  • 7Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms. New York, USA: Plenum Press, 1981.
  • 8Krinidis S, Chatzis V. A Robust Fuzzy Local Information C-Me,ms Clustering Algorithm. IEEE Trans on Image Processing, 2010, 19 (5) : 1328-1337.
  • 9Li Yanling, Shen Yi. An Automatic Fuzzy C-Means Algorithm for Image Segmentation. Soft Computing, 2010, 14(2): 123-128.
  • 10Yu Zhiding, Au O C, Zou Ruobing, et al. An Adaptive Unsuper- vised Approach toward Pixel Clustering and Color Image Segmenta- tion. Pattern Recognition, 2010, 43(5) : 1889-1906.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部