期刊文献+

含倾斜砂土夹层的人工岛地震液化灾害分析 被引量:3

Analyses of seismic liquefaction induced disaster in artificial island with sloping sand layer
下载PDF
导出
摘要 强地震易造成地基中倾斜砂土夹层液化后产生永久变形和位移,并诱发流滑现象,进而对上部结构产生严重破坏.基于FE-FD耦合有限元方法,综合考虑倾斜砂土夹层的坡度、厚度、埋深以及海水水位因素,对某近海人工岛二维结构模型进行了数值模拟分析.结果表明:砂土层的坡度、厚度、埋深以及水位因素对人工岛的地震液化灾害有着不同程度的影响,其中坡度的影响最显著,而水位的影响最不明显,特别是水位对超孔隙水压力增长的影响非常小.人工岛的侧向扩展是在地震过程中饱和倾斜砂土夹层完全液化被触发后才得以发生,而且是在地震作用过程中某段时间内沿液化层斜面的有限滑动,其灾害程度比水平砂土层液化造成的破坏要大得多,而且易造成岛体不均匀沉降,对护岸造成严重破坏.该分析结论可为近海岸工程地震液化灾害评价分析提供参考依据. Liquefaction due to strong earthquake easily causes permanent displacement and strain of sloping sand layer in the fundament and induces the phenomena of flow slides,and then brings serious damages to the superstructure. Considering sloping sand layers' gradient, thickness, depth and seawater level synthetically, a two-dimensional offshore artificial island model was simulated numerically by FE-FD coupling finite element analysis method.The experimental results indicate that these four influence factors have different effects on the large deformation of artificial island in the course of seismic liquefaction.The influence of gradient is the greatest,and the influence of seawater level is the most non-obvious,and especially,its effect on excess pore water pressure is very small. Lateral spreading of artificial island j ust occurs after total liquefaction of saturated sloping sand layer in the course of seismic,which is a limit slide along the slope during a period of time.Its degree of damage is much bigger than that of damage induced by liquefaction of horizontal sand layer,and it easily causes serious differential settlement and damage of revetment of artificial island. These analytical results can provide reference for hazard evaluation of offshore engineering due to seismic liquefaction.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2015年第5期504-510,共7页 Journal of Dalian University of Technology
基金 "九七三"国家重点基础研究发展计划资助项目(2011CB013605-2) 国家自然科学基金资助项目(51078062)
关键词 人工岛 地震 数值模拟 液化 倾斜砂土夹层 侧向滑移 沉降 artificial island earthquake numerical simulation liquefaction sloping sand layer lateral spreading settlement
  • 相关文献

参考文献13

  • 1Boulanger R W, Mejia L H,Idriss I M.Liquefaction at Moss Landing during Loma Prietaearthquake [ J ]. Journal of Geotechnical andGeoenvironmental Engineering, 1997,123(5):453-467.
  • 2Inagaki H, Iai S, Sugano T,et al. Performance ofcaisson type quay walls at Kobe Port [J]. Soils andFoundations,1996(S) :119-136.
  • 3Chu D B, Stewart J P, Youd T L,et al.Liquefaction-induced lateral spreading in near-faultregions during the 1999 Chi-Chi, Taiwanearthquake [ J ]. Journal of Geotechnical andGeoenvironmental Engineering, 2006,132 (12):1549-1565.
  • 4Cetin K O,Youd T L,Seed R B,et al.Liquefaction-induced lateral spreading at lzmit Bayduring the Kocaeli (lzmit)-Turkey earthquake [J].Journal of Geotechnical and GeoenvironmentalEngineering, 2004, 130(12):1300-1313.
  • 5蔡晓光,袁晓铭,刘汉龙,孙锐.近岸水平场地液化侧向大变形影响因素分析[J].世界地震工程,2007,23(2):20-25. 被引量:9
  • 6蔡晓光,袁晓铭,刘汉龙,孙锐,周静.近岸水平场地液化侧向大变形机理及软化模量分析方法[J].地震工程与工程振动,2005,25(3):125-131. 被引量:11
  • 7袁晓铭 蔡晓光.人工岛地基液化侧移分析.水利学报,2005,(1):541-545.
  • 8Noda Toshihiro, Asaoka Akira, Nakai Kentaro.Modeling and seismic response analysis of reclaimedartificial ground [ J ]. Geotechnical SpecialPublication, 2010(201):294-299.
  • 9Oka Fusao. Cyclic elasto-viscoplastic constitutivemodel for clay based on the non-linear hardeningrule [ C ] // Proceedings of the InternationalSymposium on Numerical Models in Geomechanics.Rotterdam: A. A. Balkema,1992.
  • 10Oka F, Yashima A,Kato M,et al. Constitutivemodel for sand based on the non-linear kinematichardening rule and itvs application [ C ] //Proceedings of the World Conference on EarthquakeEngineering. Rotterdam: A. A. Balkema, 1992:2529-2534.

二级参考文献35

  • 1蔡晓光,袁晓铭,刘汉龙,孙锐,周静.近岸水平场地液化侧向大变形机理及软化模量分析方法[J].地震工程与工程振动,2005,25(3):125-131. 被引量:11
  • 2孙锐,袁晓铭.非均等固结下饱和砂土孔压增量简化计算公式[J].岩土工程学报,2005,27(9):1021-1025. 被引量:21
  • 3景立平,王绍博,张荣祥.砂土液化诱发的地面侧移机理研究[J].地震工程与工程振动,1996,16(3):128-136. 被引量:8
  • 4Yoshida M, Miyajima M, Kitaura M. Characteristics of liquefied ground flow at plane reclaimed land during the 1995 Kobe Earthquke[A]. 12th World Conference on Earthquake Engineering[C]. Auckland, 2000.
  • 5Ishihara K, Yoshida K, Kato M. Ground deformation characteristics caused by lateral spreading during the 1995 Hanshin-Awaji Earthquake[A].Proceedings, 6th Japan-U. S. Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction [C].National Center for Earthquake Engineering Research, Technical Report NCEER-94-0026, 1994. 221~242.
  • 6Sawada S, Ozutsumi O, Iai S. Analysis of liquefaction induced residual deformation for two types of quay walls: analysis by FLIP [A]. 12th World Conference on Earthquake Engineering[C]. Auckland, 2000.
  • 7Yasuda S, Nagase, H Kiku H, et al. A simplified procedure for the analysis of the permanent ground displacement [A]. Proceedings, 3rd JapanU.S. Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction[C]. National Center for Earthquake Engineering Research, Technical Report NCEER-91-0001:225-236, 1991.
  • 8Iai S, Sugano T. Shake table testing on seismic performance of gravity quay walls [A]. 12 th World Conference on Earthquake Engineering, Auckland, 2000.
  • 9Sun R, Yuan X. The Formula for evaluating pore water pressure of saturated sand in anisotropic consolidation under earthquake loading[A].Proc. the 3rd International Conference on Continental Earthquakes[C]. Beijing, 2004.
  • 10Sherif M A, Ishibashi I, Ttsuchiya C. Pore-pressure Prediction during earthquake loadings[J]. Soil and Foundation, 1978, 18 (4):19~29.

共引文献26

同被引文献62

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部