期刊文献+

基于动力方法的改进杆件轴力识别 被引量:4

Vibration-based improved identification of axial force for bar members
下载PDF
导出
摘要 在针对杆系结构中轴力杆或者索缆结构中的短索所提出的识别边界不确定的杆件轴力的解析方法基础上,提出了一种改进的轴力识别方法.首先,采用修正的Timoshenko梁理论,充分考虑转动惯量、剪切变形、剪切变形引起的转动惯量和传感器质量对结构动力特性的影响,建立改进的动力方程;然后通过Matlab软件进行数值模拟,提取某杆件的前五阶频率和模态参数,以此构建特征方程进而识别杆件轴力,从4个方面分析了修正Timoshenko梁理论相对传统Timoshenko梁理论识别精度提高的原因;最后通过实验数据验证了该方法的精确性和适用性.这种改进方法的优点在于无须事先假定边界条件,仅知传感器之间的相对位置即可实施,因而适用范围较广. Improved axial force identification method for bar members is proposed based on the analytical method which was established for vibration-based identification of axial force of tie-bars and short thick cables with uncertain boundary conditions.Firstly,modified Timoshenko beam theory was considered by taking the influence of the rotational inertia,shear deformation,the rotational inertia caused by shear deformation and sensor mass on structural dynamic characteristics into account to establish an improved dynamic equation.Then,the characteristic equation can be solved to identify axial force.The first five-order natural frequencies and modal parameters of a bar are computed through numerical simulation with Matlab.The improved accuracies of identifying axial force by modified Timoshenko beam theory compared to that of traditional Timoshenko beam theory are discussed from four aspects.Finally,a laboratory experiment is employed to investigate the feasibility and accuracy of the proposed method.One significant advantage of the proposed method is that there is no prerequisite information about the boundary condition required,but only the relative locations of sensors to identify the axial force.Therefore,the method can be widely applied to many beam or truss elements.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2015年第5期511-517,共7页 Journal of Dalian University of Technology
基金 国家自然科学基金委创新研究群体基金项目(51121005) 国家自然科学基金资助项目(51578107) "九七三"国家重点基础研究发展计划资助项目(2015CB057704) 中央高校基本科研业务费专项资金资助项目
关键词 轴力识别 杆系结构 TIMOSHENKO梁 振动测试 axial force identification bar members Timoshenko beam vibration test
  • 相关文献

参考文献11

  • 1姜建山,唐德东,周建庭.桥梁索力测量方法与发展趋势[J].重庆交通大学学报(自然科学版),2008,27(3):379-382. 被引量:30
  • 2段波,曾德荣,卢江.关于斜拉桥索力测定的分析[J].重庆交通学院学报,2005,24(4):6-8. 被引量:46
  • 3姚文斌,程赫明.用“三点弯曲法”原理测定钢丝绳张力[J].实验力学,1998,13(1):79-84. 被引量:35
  • 4Barnes M R. Form finding and analysis of tensionstructures by dynamic relaxation [J]. InternationalJournal of Space Structures, 1999,14(2) : 89-104.
  • 5Haug E,Powell G H. Finite Element Analysis ofNonlinear Membrane Structures [M]. Berkeley :Department of Civil Engineering, StructuralEngineering and Structural Mechanics,College ofEngineering, University of California, 1972.
  • 6Mehrabi A B, Tabatabai H. Unified finitedifference formulation for free vibration of cables[J]. Journal of Structural Engineering* 1998,124(11):1313-1322.
  • 7李素贞,G. D. Roeck,E.Reynders.杆件轴力的一种识别方法[J].振动.测试与诊断,2011,31(6):694-699. 被引量:6
  • 8Li S, Reynders E, Maes K,et al. Vibration-basedestimation of axial force for a beam member withuncertain boundary conditions [J]. Journal of Soundand Vibration, 2013,332(4):795-806.
  • 9Maes K, Peeters J, Reynders E, et al.Identification of axial forces in beam members bylocal vibration measurements [J]. Journal of Soundand Vibration, 2013,332(21):5417-5432.
  • 10Clough R W,Penzien J. Dynamics of Structures[M ]. Berkeley: Computer & Structure,Inc.,1975.

二级参考文献35

  • 1唐德东.新型在线索力传感器研制[J].仪表技术与传感器,2006(8):1-2. 被引量:7
  • 2[7]Sumitro S.True-stress measurement of PC steels by EM sensor,Joural of Pre-stressed Concrete Japan[J].Japan Prestressed Concrete Engineering Association,2001,43(6):99-103.
  • 3[8]Wang M L,Chen Z.Magneto-elastic permeability measurement for stress monitoring in steel tendons and cables[J].Proc.of the SPIE 7th Annual Symposium on Smart Structures and Materials,Health Monitoring of the Highway Transportation Infrastructure,2000,3995:492-500.
  • 4[9]Lloyd G M,Singh V,Wang M L.Experimental evaluation of differential thermal errors in magnetostatic stress sensors for Re《180[J].IEEE Sensors 2002,Magnetic Sensing Ⅲ,2002(6):54-56.
  • 5Park S, Choi S, Oh S T, et al. Identification of the tensile force in high-tension bars using modal sensitivities[J]. International Journal of Solids and Structures, 2006, 43(10): 3185-3196.
  • 6Tullini N, Laudiero F. Dynamic identification of beamaxial loads using one flexural mode shape[J].Journal of Sound and Vibration, 2008, 318: 131-147.
  • 7Irvine M. Cable structures[M]. New York: Dover Publications, 1992.
  • 8Russell J C, Lardner T J. Experimental determination of frequencies and tension for elastic cables[J]. Journal of Engineering Mechanics, ASCE, 1998, 124 (10) : 1067-1072.
  • 9Zui H, Shinke T, Namita Y. Practical formulas for estimation of cable tension by vibration method[J]. Journal of Structural Engineering, ASCE, 1996, 122, 651-656.
  • 10Mehrabi A B, Tabatabai H. Unified finite difference formulation for free vibration of cables[J]. Journal of Structural Engineering, ASCE, 1998, 124: 1313- 1322.

共引文献164

同被引文献22

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部