期刊文献+

The de-excited energy of electron capture in accreting neutron star crusts 被引量:1

The de-excited energy of electron capture in accreting neutron star crusts
下载PDF
导出
摘要 When a daughter nucleus produced by electron capture takes part in a level transition from an excited state to its ground state in accreting neutron star crusts, ther- mal energy will be released and heat the crust, increasing crust temperature and chang- ing subsequent carbon ignition conditions. Previous studies show that the theoretical carbon ignition depth is deeper than the value inferred from observations because the thermal energy is not sufficient. In this paper, we present the de-excited energy from electron capture of rp-process ash before carbon ignition, especially for the initial evo- lution stage of rp-process ash, by using a level-to-level transition method. We find the theoretical column density of carbon ignition in the resulting superbursts and compare it with observations. The calculation of the electron capture process is based on a more reliable level-to-level transition, adopting new data from experiments or theo- retical models (e.g., large-scale shell model and proton-neutron quasi-particle random phase approximation). The new carbon ignition depth is estimated by fitting from previous results of a nuclear reaction network. Our results show the average de-excited energy from electron capture before carbon ignition is -0.026 MeV/u, which is significantly larger than the previous results. This energy is beneficial for enhancing the crust's temperature and decreasing the carbon ignition depth of superbursts. When a daughter nucleus produced by electron capture takes part in a level transition from an excited state to its ground state in accreting neutron star crusts, ther- mal energy will be released and heat the crust, increasing crust temperature and chang- ing subsequent carbon ignition conditions. Previous studies show that the theoretical carbon ignition depth is deeper than the value inferred from observations because the thermal energy is not sufficient. In this paper, we present the de-excited energy from electron capture of rp-process ash before carbon ignition, especially for the initial evo- lution stage of rp-process ash, by using a level-to-level transition method. We find the theoretical column density of carbon ignition in the resulting superbursts and compare it with observations. The calculation of the electron capture process is based on a more reliable level-to-level transition, adopting new data from experiments or theo- retical models (e.g., large-scale shell model and proton-neutron quasi-particle random phase approximation). The new carbon ignition depth is estimated by fitting from previous results of a nuclear reaction network. Our results show the average de-excited energy from electron capture before carbon ignition is -0.026 MeV/u, which is significantly larger than the previous results. This energy is beneficial for enhancing the crust's temperature and decreasing the carbon ignition depth of superbursts.
作者 Jie Zhang
出处 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2015年第9期1483-1492,共10页 天文和天体物理学研究(英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos. 11273020, 11305133 and U1331121) China Scholarship (Grant No. 2011851096) the Science Foundation of China West Normal University (Grant No. 11B007)
关键词 stars: neutrons -- nuclear reactions -- nucleosynthesis -- abundances stars: neutrons -- nuclear reactions -- nucleosynthesis -- abundances
  • 相关文献

参考文献44

  • 1Altamirano, D., Keek, L., Cumming, A., et al. 2012, MNRAS, 426, 927.
  • 2Aufderheide, M. B., Fushiki, I., Woosley, S. E., & Hartmann, D. H. 1994, ApJS, 91,389.
  • 3Belian, R. D., Conner, J. E, & Evans, W. D. 1976, ApJ, 206, L135.
  • 4Cavecchi, Y., Watts, A. L., Braithwaite, J., & Levin, Y. 2013, MNRAS, 434, 3526.
  • 5Charnel, N., & Haensel, E 2008, Living Reviews in Relativity, 11, 10.
  • 6Cooper, R. L., & Kaplan, D. L. 2010, ApJ, 708, L80.
  • 7Cornelisse, R., Heise, J., Kuulkers, E., Verbunt, E, & in't Zand, J. J. M. 2000, A&A, 357, L21.
  • 8Cumming, A., Macbeth, J., in 't Zand, J. J. M., & Page, D. 2006, ApJ, 646, 429.
  • 9Degenaar, N., Wijnands, R., & Miller, J. M. 2013, ApJ, 767, L31.
  • 10Dzhioev, A. A., Vdovin, A. I., Ponomarev, V. Y., et al. 2010, Phys. Rev. C, 81, 015804.

同被引文献1

引证文献1

二级引证文献1

  • 1刘晶晶,罗志全.Neutrino energy loss by electron capture in magnetic field at the crusts of neutron stars[J].Chinese Physics C,2008,32(2):108-111.
  • 2云中客.从1500年以来地面温度的变化[J].物理,2003,32(4):277-277.
  • 3阿秒电子捕获[J].激光与光电子学进展,2008,45(2):39-39.
  • 4Zhang Ruitian,Ma Xinwen,Zhang Shaofen,Zhu Xiaolong,Feng Wentian,Guo Dalong,Li Bin,Liu Huiping,Wang Jianguo,Yan Shuncheng,Zhang Pengju,Wang Qian.Electron Capture to Continuum of Transfer Ionization in 30 keV/u He2+ on Argon Collision[J].IMP & HIRFL Annual Report,2011(1):179-179.
  • 5Wang Yuyu Zhao Yongtao Cheng Rui Zhou Xianming Lei Yu Wang Xing Xu Ge Sun Yuanpo Xiao Guoqing.Energy Loss of Low Energy H, He and O Ions in Carbon Foils[J].IMP & HIRFL Annual Report,2011(1):43-43.
  • 6张洁,刘门全,罗志全.Influence of strong magnetic field on β decay in the crusts of neutron stars[J].Chinese Physics B,2006,15(7):1477-1480. 被引量:1
  • 7刘晶晶,罗志全,刘宏林,赖祥军.Effect of strong magnetic field on electron capture of iron group nuclei in crusts of neutron stars[J].Chinese Physics B,2007,16(9):2671-2675.
  • 8Chen Li,R. Bredy,J. Beranard,S. Martin.Projectile Energy Loss in Ion-C_(60) Collisions[J].近代物理研究所和兰州重离子加速器实验室年报:英文版,2004(1):112-112.
  • 9高延光,李永华.中国东北—华北地区地壳厚度与泊松比及其地质意义[J].地球物理学报,2014,57(3):847-857. 被引量:23
  • 10K.A.Olive,K.Agashe,C.Amsler,M.Antonelli,J.-F.Arguin,D.M.Asner,H.Baer,H.R.Band,R.M.Barnett,T.Basaglia,C.W.Bauer,J.J.Beatty,V.I.Belousov,J.Beringer,G.Bernardi,S.Bethke,H.Bichsel,O.Biebe,E.Blucher,S.Blusk,G.Brooijmans,O.Buchmueller,V.Burkert,M.A.Bychkov,R.N.Cahn,M.Carena,A.Ceccucci,A.Cerr,D.Chakraborty,M.-C.Chen,R.S.Chivukula,K.Copic,G.Cowan,O.Dahl,G.D'Ambrosio,T.Damour,D.de Florian,A.de Gouvea,T.DeGrand,P.de Jong,G.Dissertor,B.A.Dobrescu,M.Doser,M.Drees,H.K.Dreiner,D.A.Edwards,S.Eidelman,J.Erler,V.V.Ezhela,W.Fetscher,B.D.Fields,B.Foster,A.Freitas,T.K.Gaisser,H.Gallagher,L.Garren,H.-J.Gerber,G.Gerbier,T.Gershon,T.Gherghetta,S.Golwala,M.Goodman,C.Grab,A.V.Gritsan,C.Grojean,D.E.Groom,M.Grnewald,A.Gurtu,T.Gutsche,H.E.Haber,K.Hagiwara,C.Hanhart,S.Hashimoto,Y.Hayato,K.G.Hayes,M.Heffner,B.Heltsley,J.J.Hernandez-Rey,K.Hikasa,A.Hocker,J.Holder,A.Holtkamp,J.Huston,J.D.Jackson,K.F.Johnson,T.Junk,M.Kado,D.Karlen,U.F.Katz,S.R.Klein,E.Klempt,R.V.Kowalewski,F.Krauss,M.Kreps,B.Krusche,Yu.V.Kuyanov,Y.Kwon,O.Lahav,J.Laiho,P.Langacker,A.Liddle,Z.Ligeti,C.-J.Lin,T.M.Liss,L.Littenberg,K.S.Lugovsky,S.B.Lugovsky,F.Maltoni,T.Mannel,A.V.Manohar,W.J.Marciano,A.D.Martin,A.Masoni,J.Matthews,D.Milstead,P.Molaro,K.Monig,F.Moortgat,M.J.Mortonson,H.Murayama,K.Nakamura,M.Narain,P.Nason,S.Navas,M.Neubert,P.Nevski,Y.Nir,L.Pape,J.Parsons,C.Patrignani,J.A.Peacock,M.Pennington,S.T.Petcov,Kavli IPMU,A.Piepke,A.Pomarol,A.Quadt,S.Raby,J.Rademacker,G.Raffel,B.N.Ratcliff,P.Richardson,A.Ringwald,S.Roesler,S.Rolli,A.Romaniouk,L.J.Rosenberg,J,L.Rosner,G.Rybka,C.T.Sachrajda,Y.Sakai,G.P.Salam,S.Sarkar,F.Sauli,O.Schneider,K.Scholberg,D.Scott,V.Sharma,S.R.Sharpe,M.Silari,T.Sjostrand,P.Skands,J.G.Smith,G.F.Smoot,S.Spanier,H.Spieler,C.Spiering,A.Stahl,T.Stanev,S.L.Stone,T.Sumiyoshi,M.J.Syphers,F.Takahashi,M.Tanabashi,J.Terning,L.Tiator,M.Titov,N.P.Tkachenko,N.A.Tornqvist,D.Tovey,G.Valencia,G.Venanzoni,M.G.Vincter,P.Vogel,A.Vogt,S.P.Wakely,W.Walkowiak,C.W.Walter,D.R.Ward,G.Weiglein,D.H.Weinberg,E.J.Weinberg,M.White,L.R.Wiencke,C.G.Wohl,L.Wolfenstein,J.Womersley,C.L.Woody,R.L.Workman,A.Yamamoto,W.-M.Yao,G.P.Zeller,O.V.Zenin,J.Zhang,R.-Y.Zhu,F.Zimmermann,P.A.Zyla,G.Harper,V.S.Lugovsky,P.Schaffner.COMMONLY USED RADIOACTIVE SOURCES[J].Chinese Physics C,2014,38(9):466-466.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部