期刊文献+

多数满意陪审团定理的极大和极小概率

Maximal and minimal probabilities of the majority satisfaction jury theorem
下载PDF
导出
摘要 证明了在群体中,当各个体正确判断方案满意性的概率越分散,由多数满意规则确定的相应群体正确判断方案满意性的概率将越大.根据这一结果得到:在所有的个体正确判断方案满意性的平均概率相同的情况下,由多数满意陪审团定理决定的群体正确判断方案满意性的极大概率和极小概率的表达式. This paper proves that when the probabilities of individuals in the group correctly judging satisfaction of alternatives are more dispersed that corresponding to the group using the majority satisfactory rule will have a higher probability. According to this result, we get the expressions of maximal probability and minimal probability of the group determined by majority satisfaction jury theorem on average probability of all individuals correctly judging satisfaction of alternatives has same.
出处 《运筹学学报》 CSCD 北大核心 2015年第3期8-17,共10页 Operations Research Transactions
关键词 群体决策 满意指标 多数满意规则 多数满意陪审团定理 group decision making, satisfaction criterion, majority satisfactory rule,majority satisfaction jury theorem
  • 相关文献

参考文献4

二级参考文献17

  • 1Borda J C.Memoire sur les Elections au Scrutin[M].Paris:Memoires de I‘ Academic Royale des Sciences,1953.
  • 2Condorcet M J A N,Marquis de C.Essai sur l‘Application de l‘Analyse á la Probabilité des Décisions Rendues á la Pluralité des Voix[M].Paris:L‘imprimerie Royale,1785.
  • 3Black D.On the rationale of group decision making[J].Journal of Political Economy,1948,56:23-34.
  • 4Arrow K J.Social Choice and Individual Values[M].New York:John Wiley and Sons,1951.
  • 5Sidney G.Why arrow's impossibility theorem is invalid[J].Journal of Social Philosophy,1994,25(1):144-159.
  • 6Sen A K.Collective Choice and Social Welfare[M].Amsterdam:Elsevier Science,1995.
  • 7Mueller D C.Public Choice Ⅲ[M].Cambridge:Press Syndicate University of Cambridge,2003.
  • 8Hu Yuda,Hu Didi.A class of stochastic λ-Borda-number rule for group decision making[J].Operations Research Transactions,2007,11:159-163.
  • 9胡毓达.群体决策的偏差度分析[J].运筹学学报,1998,2(2):77-83. 被引量:22
  • 10胡毓达,丁鸿生.群体决策的惩罚二次评分方法[J].上海交通大学学报,1999,33(6):639-641. 被引量:4

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部