期刊文献+

一个去除边标签重叠的扩充张力模型(英文)

An augmented proximity stress model for edge label overlap removal
下载PDF
导出
摘要 在图的最优可视化过程中,当图的边和节点都包含文字或图形标签时,显示这些标签必须保证它们互相不重叠.这项工作可以融入初始布局的一部分,或作为后处理步骤.去除重叠的核心问题在于保持布局中固有的结构信息,最大限度地减少所需的额外面积,并保持边尽可能地直.提出了一种同时去除节点和边的标签重叠的计算方法.该算法基于最小化一个目标函数,使得图的布局尽少改变,并保持边的平直. When drawing graphs whose edges and nodes both contain text or graphics, such information needs to be displayed without overlaps, either as part of the initial layout or as a post processing step. The core problem in removing overlaps lies in retaining the structural information inherent in a layout, minimizing the additional area required, and keeping edges as straight as possible. This paper presents a combined node and edge overlap removal algorithm that aims at offering one solution to this problem, based on minimizing a cost function that both reduces topological changes to the original drawing, and keeps edges straight.
作者 胡一凡
机构地区 雅虎实验室
出处 《运筹学学报》 CSCD 北大核心 2015年第3期85-95,共11页 Operations Research Transactions
关键词 可视化 张力模型 visualization, graph, stress model
  • 相关文献

参考文献32

  • 1Marriott K, Stuckey P J, Tam V, et al. Removing node overlapping in graph layout using constrained optimization [J]. Constraints, 2003, 8(2): 143-171.
  • 2Gansner E R, Hu Y E Efficient, Proximity-Preserving Node Overlap Removal [J]. Journal of Graph Algorithms Applications, 2010, 14: 53-74.
  • 3Friedrich C, Schreiber F. Flexible layering in hierarchical drawings with nodes of arbitrary size [C]// Proceedings of the 27th conference on Australasian computer science, Australian Computer Society, 2004, 369-376.
  • 4Sugiyama K, Tagawa S, Toda M. Methods for visual understanding of hierarchical systems [J]. IEEE Trans. Systems, Man and Cybernetics, 1981, 11(2): 109-125.
  • 5Chuang J H, Lin C C, Yen H C. Drawing graphs with nonuniform nodes using potential fields [C]//Proc 11th Intl. Symp. on Graph Drawing, London: Springer-Verlag, 2003, 460-465.
  • 6Harel D, Koren Y. A fast multi-scale method for drawing large graphs [J]. J. Graph Algorithms and Applications, 2002, 6: 179-202.
  • 7Li W, Eades P, Nikolov N. Using spring algorithms to remove node overlapping [C]l/Proc. Asia-Pacific Symp. on Information Visualisation, 2005, 131-140.
  • 8Wang X, Miyamoto I. Generating customized layouts [C]// Proceedings of the Symposium on Graph Drawing, London: Springer, 1995, 504-515.
  • 9Gansner E R, North S C. Improved force-directed layouts [C]//Proc. 6th Intl. Symp. Graph Drawing London: Springer, 1998, 364-373.
  • 10Lyons K A, Meijer H, Rappaport D. Algorithms for cluster busting in anchored graph drawing [J]. J. Graph Algorithms and Applications, 1998, 2(1).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部