期刊文献+

基于噪声误差模型的不规则区域室内定位和锚点分布优化

Indoor localization in geometric region and anchor distribution optimization analysis based on noise error model
下载PDF
导出
摘要 结合实际工业背景,研究了一类在不规则区域且误差不服从高斯分布的室内无线定位问题.给出了噪声误差模型,在对多个传统定位算法进行性能分析的基础上,研究了待定位区域内锚点阵列的分布,改进了多锚点阵列下的定位方法,并提出基于Delaunay三角剖分锚点分布优化模型和求解方法. Indoor localization problem in geometric region from industrial practice based on noise error model is considered. With performance and comparison of tradi- tional location algorithms and numerical experiments, we study the optimal number and distribution of anchors, improve the location theory of anchor array and furthermore present an optimization model of anchors distribution based on Delaunay triangulation and its effective algorithm.
出处 《运筹学学报》 CSCD 北大核心 2015年第3期140-150,共11页 Operations Research Transactions
基金 国家自然科学基金(No.11371137)
关键词 室内定位 最佳锚点数 不规则区域 indoor localization, optimal number of anchor, geometric region
  • 相关文献

参考文献11

  • 1Liu H, Darabi H, Banerjee P, et al. Survey of wireless indoor positioning techniques and systems [J]. IEEE Transactions on Systems, Man, and Cybernetics, 2007, 37" 1067-1080.
  • 2Shen G, Zetik R, Thoma R S. Fert0rmance comparison ot I'OA and I'DUA basecl location estimation algorithm in LOS environment [C]/ / Proceeding of the 5th workshop on positioning, Navigation and communication, Hannover Germany: Publisher SHAKER publishing, 2008,.
  • 3Pal A. Localization algorithms in wireless sensor networks: Current approaches and future challenges [J]. Network Protocols and Algorithms, 2010, 2.
  • 4Ma Q, Bollmeyer C, Zhu Y, et al. Localization of heart reference point of a lying patient with microsoft kinect sensor [C]//Student Conference Medical Engineering Science, Luebeck Germany, Publisher Infinite Science Publishing, 2014.
  • 5Foy W H. Position-location solutions by Taylor-series estimation [J]. IEEE Trans. Aerosp. Elecctron. Syst, 1976, 12: 187-194.
  • 6Zhao L, Pelkn M, Bollmeyer C, et al. Comparison and performance evaluation of indoor lo- calization algorithms based on an error model for an optical reference system [C]//Student Conference Medical Engineering Science, Luebeck Germany, Publisher Infinite Science Pub- lishing, 2015.
  • 7Marquardt, Donald W. An algorithm for least-squares estimation of nonlinear parameters [J]. Journal of the Society for Industrial & Applied Mathematics, 1963, 11: 431-441.
  • 8Madsen K, Nielsen H B, Tingleff O. Methods for nonlinear least squares problems [M]. Denmark: Publisher Informatics and Mathematical Modelling, Technical University of Denmark, 2004.
  • 9Anderson E, Bai Z, Bischof C, et al. Linear Algebra PACKage [M]. Berkeley: Publisher Univ. of Tennessee; Univ. of California, 1999.
  • 10Schrijver A. Theory of Linear and Integer Programming [M]. America: Publisher Wiley, 1998.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部