摘要
对约束优化问题给出了一类光滑罚算法.它是基于一类光滑逼近精确罚函数l_p(p∈(0,1])的光滑函数L_p而提出的.在非常弱的条件下,建立了算法的一个摄动定理,导出了算法的全局收敛性.特别地,在广义Mangasarian-Fromovitz约束规范假设下,证明了当p=1时,算法经过有限步迭代后,所有迭代点都是原问题的可行解;当p∈(0,1)时,算法经过有限迭代后,所有迭代点都是原问题可行解集的内点.
For constrained optimization problem, a class of smooth penalty algorithm is proposed. It is put forward based on Lp, a smooth function of a class of smooth exact penalty function lp (p C (0, 1)). Under the very weak condition, a perturbation theorem of the algorithm is set up. The global convergence of the algorithm is derived. In particular, under the hypothesis of generalized Mangasarian-Fromovitz constraint qualification, it is proved that when p =1, after finite iterations, all iterative points of the algorithm are feasible solutions of the original problem. When p ∈ (0, 1), after finite iteration, all the iteration points are the interior points of feasible solution set of the original problem.
出处
《运筹学学报》
CSCD
北大核心
2015年第3期151-160,共10页
Operations Research Transactions
基金
supported by National Natural Science Foundations of China(Nos.11271233,11271226)
Natural Science Foundation of Shandong Province(No.ZR2012AM016)
关键词
精确罚函数
低阶精确罚函数
光滑逼近精确罚
光滑罚算法
广义Mangasarian-Fromovitz约束规范
The exact penalty function, The lower order exact penalty function,Smooth and exact penalty function approach, Smooth penalty algorithm, The generalizedMangasarian-Fromovitz constraint qualification