期刊文献+

约束优化问题的一类光滑罚算法的全局收敛特性(英文) 被引量:2

Global convergence of a class smooth penalty algorithm of constrained optimization problem
下载PDF
导出
摘要 对约束优化问题给出了一类光滑罚算法.它是基于一类光滑逼近精确罚函数l_p(p∈(0,1])的光滑函数L_p而提出的.在非常弱的条件下,建立了算法的一个摄动定理,导出了算法的全局收敛性.特别地,在广义Mangasarian-Fromovitz约束规范假设下,证明了当p=1时,算法经过有限步迭代后,所有迭代点都是原问题的可行解;当p∈(0,1)时,算法经过有限迭代后,所有迭代点都是原问题可行解集的内点. For constrained optimization problem, a class of smooth penalty algorithm is proposed. It is put forward based on Lp, a smooth function of a class of smooth exact penalty function lp (p C (0, 1)). Under the very weak condition, a perturbation theorem of the algorithm is set up. The global convergence of the algorithm is derived. In particular, under the hypothesis of generalized Mangasarian-Fromovitz constraint qualification, it is proved that when p =1, after finite iterations, all iterative points of the algorithm are feasible solutions of the original problem. When p ∈ (0, 1), after finite iteration, all the iteration points are the interior points of feasible solution set of the original problem.
出处 《运筹学学报》 CSCD 北大核心 2015年第3期151-160,共10页 Operations Research Transactions
基金 supported by National Natural Science Foundations of China(Nos.11271233,11271226) Natural Science Foundation of Shandong Province(No.ZR2012AM016)
关键词 精确罚函数 低阶精确罚函数 光滑逼近精确罚 光滑罚算法 广义Mangasarian-Fromovitz约束规范 The exact penalty function, The lower order exact penalty function,Smooth and exact penalty function approach, Smooth penalty algorithm, The generalizedMangasarian-Fromovitz constraint qualification
  • 相关文献

参考文献11

  • 1Auslender A, Penalty and barrier methods: unified framework [R]//Technical repoat, Labora- toire D'econmetrie de L'ecole Polytechnig Paris, 1997.
  • 2Auslender A, Cominetti R, Haddou M, Asymptotic Analysis for Penalty and Barrier Methods in Convex and Linear Programming [J]. Math Oper Res, 1997, 22: 43-62.
  • 3Ben-Tal A, Teboulle M. A smoothing Technique foe Non-different Optimization Problem in: Lecture Notes in Mathematics [M]. Berlin: Springer, 1989.
  • 4Chen C, Mangasarian O L. A Class of smoothing functions for nonlinear and mixed comple- mentary problems [J]. Comput Optim App, 1996, 5: 97-138.
  • 5Chen C, Mangasarian O L. Smoothing method for convex inequality and linear complementarity problems [J]. Math Program, 1995, 71: 51-69.
  • 6Conzaga C C, Castillo R A. A nonlinear programming algorithm based on non-coercive penalty functions [J]. Math Program (Sec B), 2003, 96: 87-101.
  • 7Pinar M, Zenios S. On smoothing exact penalty functions for convex constrained optimization [J]. SIAM J Optim, 1994, 4: 486-511.
  • 8Wang C Y, Zhao W L, Zhou J C, et al. Global convergence and finite termination of a class of smooth penalty function algorithms [J]. Optim Meth Soft, 2013, 28: 1-25.
  • 9Zang I. Smoothing-out technique for min-max optimization [J]. Math Program, 1980, 19: 61-77.
  • 10Rubinov A M, Glover B M, Yang X Q. Decreasing function with Applications to Penalization [J]. SIAM J Optim, 1999, 10: 289-313.

同被引文献3

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部