期刊文献+

Morse不等式的一个新证明

A New Proof of Morse Inequalities
下载PDF
导出
摘要 用Witten形变理论在带边微分流形上给出Morse不等式一个新的证明方法.首先,说明了相切型Morse函数很自然地与带边流形的Hodge理论相结合;然后,利用Witten形变给出算子ΔT在临界点的性态,进而证明了定理. Witten deformation theory is applied to a new proof of the Morse inequalities on a differentiable manifold with boundary. It is explained that the tangential Morse function is naturally combined with the Hodge theory of the manifold with boundary, then, Witten deformation gives the behavior of ΔT at critical point, and thus the theorem is proved.
作者 李合朋
出处 《四川文理学院学报》 2015年第5期7-9,共3页 Sichuan University of Arts and Science Journal
基金 四川文理学院2013年度自然科学面上项目"动力系统几何理论研究"(2013Z004Y)
关键词 MORSE不等式 Witten形变 Hodge理论 临界点 Morse inequalities Witten deformation Hodge theory critical point
  • 相关文献

参考文献7

  • 1Bismut J M.The Witten Complex and the Degenerate Morse Inequalities[J].Journal of Differential Geometry, 1986(3):207-240.
  • 2Zhang Gongqing, Liu Jiaquan.Mor.v^ theory under general boundary[J]. Systems Science and MathematicalSciences,1991(1) :78-83.
  • 3Zhou Jianwei.TTie Witten complex and the Morse inequalities[J].Journal of Suzhou university,1999(4) :8_11.
  • 4J.MWnor.Morse theory[M]. Princeton:Princeton University Press,1963:27 -31.
  • 5M. Taylor.Partial differential equations I[M] New York: Springer-Verlag,1997:368-370.
  • 6F.W.Warner.Foundations of differentiable manifolds and Lie groups[M]. New York: Springer-Verlag, 1983:222-249.
  • 7Weiping Zhang. Lectures on Chem -Weil theory and Witten deformation [M],Tianjin: Nankai Treats in Mathemat-ics, Vol.4, World Scientific, 2001:59 - 72.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部