期刊文献+

基于压缩感知的WSN数据压缩与重构 被引量:3

Data Compression and Recovery of WSN Based on Compressive Sensing
下载PDF
导出
摘要 在无线传感器网络(WSN)中,传统的处理方式是采用奈奎斯特技术对信号进行采样并重构,而随着信号频率的增加,应用奈奎斯特技术会使成本急剧增加,这是人们所不乐见的。针对这一问题,近年来出现一种新的技术即压缩感知技术,它能利用更少的数据和合适的重构方法得到更精确的原始信号。将稀疏贝叶斯学习(SBL)和压缩感知联合起来,形成了一种在噪声的情况下更好重建可压缩信号的方法,并进一步将这种方法应用在WSN中,可以在误差允许的范围内有效控制测量数据的维数,所以在保证了一定的误差的同时还减少了成本,提高了算法的效率。 In wireless sensor networks,signal is sampled and reconstructed using the technology of Nyquist in the past. But it requires a substantial increase in the cost with the growth of the signal frequency,which is that people do not like to see. Recently a new technology is emerged,which is called compressive sensing technology,is a good way to solve this problem. Compressive sensing can use less data and appropriate reconstruction method to get a more accurate original signal. Put Sparse Bayesian Learning ( SBL) and compressive sens-ing together to form a better reconstruction compressible signal under the noise. This method can effectively control the dimension of measurement data within the range of allowed error in WSN,so you can ensure a certain degree of error while reducing the cost,impro-ving the efficiency of the algorithm.
出处 《计算机技术与发展》 2015年第9期111-114,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(60972041 60972045)
关键词 无线传感网络 压缩感知 贝叶斯模型 信号重构 wireless sensor networks compressive sensing Bayesian model signal reconstruction
  • 相关文献

参考文献16

  • 1Donoho D. Compressed sensing[ J]. IEEE Trans on Informa- tion Theory ,2006,52(4) :4036-4048.
  • 2Candes E J, Wakin M B. An introduction to compressive sampling [ J ]. IEEE Signal Processing Magazine, 2008,25 (2) :21-30.
  • 3Candes E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[ J]. IEEE Trans on Information Theory,2006,52 (2) :489-509.
  • 4Tropp J A, Gilbert A C. Signal recovery from random meas- urements via orthogonal matching pursuit[ J]. IEEE Trans on Information Theory ,2007,53 ( 12 ) :4655-4666.
  • 5Needell D, Vershynin R. Signal recovery from inaccurate and incomplete measurements via regularized orthogonal matc- hing pursuit [ J ]. Found Comput Math, 2009,9 ( 3 ) : 317 - 334.
  • 6VAPNIK V N.统计学习理论[M].许建华,张学工,译.北京:电子工业出版社,2004.
  • 7VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 8薛建儒,郑南宁,郑朝晖,权炜.基于自适应高斯混合体模型的相控阵雷达TWS跟踪技术[J].电子学报,2003,31(3):433-436. 被引量:4
  • 9Babacan S D, Molina R, Katsaggelos A K. Bayesian com- pressive sensing using Laplace priors[ J]. IEEE Trans on Im- age Processing,2010,19 ( 1 ) :53-63.
  • 10Tipping M. Sparse Bayesian learning and the relevance vector machine[ J]. Journal of Machine Learning Research, 2001, 1:211-244.

二级参考文献16

  • 1薛建儒 王娉.基于视觉的地面车辆辅助导航系统[R].西安:西安交通大学人工智能与机器人研究所,2001..
  • 2Dempster, A. P, Laird, N. M, Rubin, D. B. Maximum likelihood for incomplete data via the EM algorithm.[J] .J.R. Stat. Soc,1977,B, 39:1-38.
  • 3Liu C, Sun D X. Acceleration of EM Algorithm for Mixtures Models using ECME[J]. ASA Proceedings of the Stat. Comp. Session, 1997, 109-114.
  • 4Christophe Biemacki.Initializing EM Using the Properties of its Trajectories in Gaussian Mixtures [J]. Statistics and Computing,2004, 14, 3:267-279.
  • 5Patricia McKenzie, Michael Alder. Initializing the EM Algorithm for use in Gaussian Mixture Modelling [J]. Amsterdam Esevier Science BV, 1994:91-105.
  • 6Biernacki C, Celeux G, Govaert G. Choosing Starting Values for the EM Algorithm for Getting the Highest Likelihood in Multivariate Gaussian Mixture Models[J]. Computational Statistics and Data analysis, 2002.
  • 7Banfield J. D, Raftery A. E. Model-based Gaussian and non-Gaussian clustering [J]. Biometrics, 1993, 49:803-821.
  • 8Fraley C, A.E. Raftery.How many clusters? Which clustering method? -Answers via model-based cluster analysis [J]. The Computer Journal, 1998, 41:578-588.
  • 9D.W.Scott. On optimal and data-based histograms [J]. Biometrika, 1979, 66:605-610.
  • 10Fraley C.Algorithms for model-based Gaussian hierarchical clustering [J].SIAM J.Sci.Computer, 1999, 20:270-281.

共引文献268

同被引文献20

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部