期刊文献+

Canopy interception loss in a Pinus sylvestris var. mongolica forest of Northeast China 被引量:13

Canopy interception loss in a Pinus sylvestris var. mongolica forest of Northeast China
下载PDF
导出
摘要 Pinus sylvestris var. mongolica is one of the main species to be afforested in deserts of China. But little work has been carried out on the canopy interception loss of this plant species. For researching the canopy interception loss of a natural P. sylvestris forest, we observed the gross precipitation, gross snowfall, throughfall and stemflow in a sample plot at the Forest Ecosystem Research Station of Mohe in the Great Khingan Mountains of Northeast China from July 2012 to September 2013. Considering the spatial variability of the throughfall, we increased the area rather than the number of collector and randomly relocated them once a week. The results demonstrated that the throughfall, stemflow, and derived estimates of rainfall and snowfall interception loss during the main rainy and snowy seasons were 77.12%±5.70%, 0.80%, 22.08%±5.51% and 21.39%±1.21% of the incident rainfall or snowfall, respectively. The stemflow didn't occur unless the accumulated rainfall reached up to 4.8 mm. And when the gross precipitation became rich enough, the stemflow increased with increasing tree diameters. Our analysis revealed that throughfall was not observed when rainfall was no more than 0.99 mm, indicating that the canopy storage capacity at saturation was 0.99 mm for P. sylvestris forest. Pinus sylvestris var. mongolica is one of the main species to be afforested in deserts of China. But little work has been carried out on the canopy interception loss of this plant species. For researching the canopy interception loss of a natural P. sylvestris forest, we observed the gross precipitation, gross snowfall, throughfall and stemflow in a sample plot at the Forest Ecosystem Research Station of Mohe in the Great Khingan Mountains of Northeast China from July 2012 to September 2013. Considering the spatial variability of the throughfall, we increased the area rather than the number of collector and randomly relocated them once a week. The results demonstrated that the throughfall, stemflow, and derived estimates of rainfall and snowfall interception loss during the main rainy and snowy seasons were 77.12%±5.70%, 0.80%, 22.08%±5.51% and 21.39%±1.21% of the incident rainfall or snowfall, respectively. The stemflow didn't occur unless the accumulated rainfall reached up to 4.8 mm. And when the gross precipitation became rich enough, the stemflow increased with increasing tree diameters. Our analysis revealed that throughfall was not observed when rainfall was no more than 0.99 mm, indicating that the canopy storage capacity at saturation was 0.99 mm for P. sylvestris forest.
出处 《Journal of Arid Land》 SCIE CSCD 2015年第6期831-840,共10页 干旱区科学(英文版)
基金 funded by the National Natural Science Foundation of China (31370460) supported by the CFERN (Chinese Forest Ecosystem Research Network) & GENE Award Funds for Ecological Papers
关键词 rainfall snowfall throughfall stemflow Great Khingan Mountains rainfall snowfall throughfall stemflow Great Khingan Mountains
  • 相关文献

参考文献7

二级参考文献103

共引文献150

同被引文献144

引证文献13

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部